Acuna, E., Ehret, U., Bäuerle, N. & Loritz, R. (2023). “Hybrid modelling in hydrology by Neural Network-based prediction of conceptual model parameters.” EGU23. https://doi.org/10.5194/egusphere-egu23-3575
Aguirre, A., Foster, B., and Merali, Z. (Eds.) (2015) “It From Bit or Bit From It?” On Physics and Information. Published in cooperation with the renowned physics “think-tank” Foundational Questions Institute, FQXi. Springer. https://www.springer.com/gp/book/9783319129457
Alemayehu, T., Gupta, H.V., van Griensven, A. & Bauwens, W. (2022). “On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data.” Water 14 (8), 1252. https://doi.org/10.3390/w14081252
Azmi, E., Ehret, U., Weijs, S.V., Ruddell, B.L., and Perdigão, R.A.P. (2021). Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance, Hydrol. Earth Syst. Sci., 25(2), 1103-1115.
Azmi, E., Strobl, M., van Pruijssen, R., Ehret, U., Meyer, J. & Streit, A. (2020). “Evolutionary Approach of Clustering to Optimize Hydrological Simulations.” Computational Science and Its Applications–ICCSA 2020: 20th International …. https://doi.org/10.1007/978-3-030-58799-4_45
Balasis, G., Donner, R., Potirakis, S., Runge, J., Papadimitriou, C., Daglis, I., Eftaxias, K. and Kurths, J. (2013). Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System. Entropy 15 (11), 4844-4888.
Baru, C., Pozmantier, M., Altintas, I., Baek, S., Cohen, J., Condon, L., Fanti, G., et al. (2022). “Enabling AI innovation via data and model sharing: An overview of the NSF Convergence Accelerator Track D.” AI magazine 43 (1), 93-104. https://doi.org/10.1002/aaai.12042
Bassiouni, M. & Vico, G. (2020). “Stomatal Optimization Models Ranked by Predictive and Functional Accuracy at Ecosystem Scales.” AGU Fall Meeting Abstracts, Dec. 2020, B045-06.
Bennett, A. & B. Nijssen. (2021). Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models. Water Resources Research 57 (5), e2020WR029328. https://doi.org/10.1029/2020WR029328
Bennett, A. & Nijssen, B. (2022). Explainable AI uncovers how neural networks learn to regionalize in simulations of turbulent heat fluxes at FluxNet sites. Authorea Preprints. https://doi.org/10.1002/essoar.10506880.2
Bennett, A. (2023). AI for physics-inspired hydrology modeling. Artificial Intelligence in Earth Science, 157-203. https://doi.org/10.1016/B978-0-323-91737-7.00006-2
Bennett, A., Nijssen, B., Ou, G., Clark, M. & Nearing, G. (2019). Quantifying process connectivity with transfer entropy in hydrologic models. Water Resources Research, 55, 4613–4629. https://doi.org/10.1029/2018WR024555
Bennett, A., Stein, A., Cheng, Y., Nijssen, B. & Mcguire, M. (2022). A process-conditioned and spatially consistent method for reducing systematic biases in modeled streamflow. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-21-0174.1
Bennett, A.R., Hamman, J.J. & Nijssen, B. (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software 5 (47), 2042. https://doi.org/10.21105/joss.02042
Bennett, Andrew, et al. (2019) “Quantifying process connectivity with transfer entropy in hydrologic models.” Water Resources Research. https://doi.org/10.1029/2018WR024555
Bertschinger, N., Rauh, J., Olbrich, E., Jost, J. and Ay, N. (2014). Quantifying Unique Information. Entropy 16, 2161–2183.
Boba, P., Bollmann, D., Schoepe, D., Wester, N., Wiesel, J., and Hamacher, K. (2015). Efficient computation and statistical assessment of transfer entropy. Comput. Phys. 3.
Brenner, C., Frame, J., Nearing, G. & Schulz, K. (2021). “Predicting evapotranspiration using machine and deep learning methods.” Springer Link: Österr Wasser- und Abfallw 73, 295–307. https://doi.org/10.1007/s00506-021-00768-y
Brenner, C., Frame, J., Nearing, G. & Schulz, K. (2021). “Schätzung der Verdunstung mithilfe von Machine-und Deep Learning-Methoden.” Österreichische Wasser-und Abfallwirtschaft 73 (7-8), 295-307. https://doi.org/10.1007/s00506-021-00768-y
Brodu, N. & Crutchfield, J.P. (2022). Discovering causal structure with reproducing-kernel Hilbert space ε-machines. Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (2), 023103. https://doi.org/10.1063/5.0062829
Brodu, N. (2021). Systèmes complexes: inférence, dynamique et applications. Université de Bordeaux. https://theses.hal.science/tel-03870042/
Brunsell, N. A. (2010). “A multiscale information theory approach to assess spatial-temporal variability of daily precipitation.” Journal of Hydrology 385.1: 165-172.
Brunsell, N. A., and Anderson, M. C. (2011). “Characterizing the multi-scale spatial structure of land-atmosphere interactions with information theory.” Biogeosciences Discussions 8.2.
Brunsell, N. A., J. M. Ham, and C. E. Owensby (2008). “Assessing the multi-resolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment.” Remote Sensing of Environment 112.6 pp. 2977-2987.
Caticha, A. & C. Cafaro (2007). “From information geometry to Newtonian dynamics.” http://aip.scitation.org/doi/abs/10.1063/1.2821259.
Chaves, M.Á., Guthke, A., Ehret, U. & Gupta, H. (2023). “UNITE: A toolbox for unified diagnostic evaluation of physics-based, data-driven and hybrid models based on information theory.” EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4039. https://doi.org/10.5194/egusphere-egu23-4039
Chen, J., Zheng, F., May, R., Guo, D., Gupta, H., Maier, H.R. (2022). “Improved data splitting methods for data-driven hydrological model development based on a large number of catchment samples.” Journal of Hydrology 613, 128340. https://doi.org/10.1016/j.jhydrol.2022.128340
Choi, Y.D., Goodall, J.L., Sadler, J.M., Castronova, A.M., Bennett, A., Li, Z., et al. (2021). Toward open and reproducible environmental modeling by integrating online data repositories, computational environments, and model Application Programming Interfaces. Environmental Modelling & Software 135, 104888. https://doi.org/10.1016/j.envsoft.2020.104888
Clark, M.P., Zolfaghari, R., Green, K.R., Trim, S., Knoben, W.J.M., Bennett, A., et al. (2021). The numerical implementation of land models: Problem formulation and laugh tests. Journal of Hydrometeorology 22 (6), 1627-1648. https://doi.org/10.1175/JHM-D-20-0175.1
Clutter, M., Ferré, T.P.A., Zhang, Z.F. & Gupta, H. (2019). “Robust predictive design of field measurements for evapotranspiration barriers using universal multiple linear regression.” Water Resources Research 55 (11), 8478-8491. https://doi.org/10.1029/2019WR026194
Condon, L.E., Farley, A., Jourdain, S., O’leary, P., Avery, P., Gallagher, L., et al. (2023). “ParFlow Sand Tank: A tool for groundwater exploration.” Journal of Open Source Education 6 (61), 179. https://doi.org/10.21105/jose.00179
Cover, T. and Thomas, J. (2006). Elements of Information Theory. Wiley.
Cox, R. T. (1964). Probability, frequency, and reasonable expectation. Am. J. Phys. 14, 1-13. Full Cox reference.
Danesh‐Yazdi, M., Klaus, J., Condon, L.E. & Maxwell, R.M. (2018). “Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions.” Hydrological Processes 32 (8), 1063-1076. https://doi.org/10.1002/hyp.11481
Darscheid, P., Guthke, A. & Ehret, U. (2018). “A maximum-entropy method to estimate discrete distributions from samples ensuring nonzero probabilities.” Entropy 20 (8), 601. https://doi.org/10.3390/e20080601
Datcu, M., Seidel, K. and Walessa, M. (1998) “Spatial information retrieval from remote-sensing images. I. Information theoretical perspective,” IEEE Transactions on Geoscience and Remote Sensing, 36(5), pp. 1431-1445.
De la Fuente, L..A., Gupta, H.V. & Condon, L.E. (2023). “Toward a Multi‐Representational Approach to Prediction and Understanding, in Support of Discovery in Hydrology.” Water Resources Research 59 (1), e2021WR031548. 27 Dec. 2022. https://doi.org/10.1029/2021WR031548
De la Fuente, L.A., Ehsani, M.R., Gupta, H.V. & Condon, L.E. (2023). “Towards Interpretable LSTM-based Modelling of Hydrological Systems.” EGUsphere 2023, 1-29. https://doi.org/10.5194/egusphere-2023-666
De la Fuente, L.A., Gupta, H.V. & Condon, L.E. (2023). “Toward a Multi‐Representational Approach to Prediction and Understanding, in Support of Discovery in Hydrology.” Water Resources Research 59 (1), e2021WR031548. https://doi.org/10.1029/2021WR031548
Deardorff, E., Lotfi, H., Rahat, S. & Frame, J. (2021). “Evaluating the performance of long short-term memory (LSTM) modeling for predicting streamflow in subcatchments of differing size and hydrologic characteristics in Reynolds ….” AGU Fall Meeting Abstracts 2021, H31B-06. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H31B..06D/abstract
DelSole, T. & Tippett, MK (2007). Predictability: Recent Insights From Information Theory. Information Theory and Physics. Full DelSole reference.
Donges, Jonathan F., et al. “Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package.” Chaos: An Interdisciplinary Journal of Nonlinear Science 25.11 (2015): 113101.
Dwivedi, D., Nearing, G., Gupta, H., Sampson, A.K., Condon, L., Ruddell, B., et al. (2021). “Knowledge-Guided Machine Learning (KGML) Platform to Predict Integrated Water Cycle and Associated extremes.” Artificial Intelligence for Earth System Predictability (AI4ESP) United States: N. p., 2021.. https://doi.org/10.2172/1769733
Ehret, U. & Dey, P. (2022). “cu-curve: A method to analyse, classify and compare dynamical systems by uncertainty and complexity.” Hydrology and Earth System Sciences Discussions, 1-12. https://doi.org/10.5194/hess-27-2591-2023
Ehret, U. & Zehe, E. (2020). “Von Starkregen und Sturzfluten-Mythen, Modelle und Management.” Karlsruher Institut fur Technologie. https://doi.org/10.5445/IR/1000117764
Ehret, U., Baste, S. & Dey, P. (2023). “Analyzing and classifying dynamical hydrological systems by uncertainty and complexity with the cu-curve method.” EGU23. https://doi.org/10.5194/egusphere-egu23-1464
Ehret, U., Pruijssen, R.V., Bortoli, M., Loritz, R., Azmi, E. & Zehe, E. (2020). “Adaptive clustering: A method to analyze dynamical similarity and to reduce redundancies in distributed (hydrological) modeling.” Hydrology and Earth System Sciences Discussions 2020, 1-33. https://doi.org/10.5194/hess-2020-65
Ehret, U., van Pruijssen, R., Bortoli, M., Loritz, R., Azmi, E. & Zehe, E. (2020). “Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements.” Hydrology and Earth System Sciences 24 (9), 4389-4411. https://doi.org/10.5194/hess-24-4389-2020
Ehsani, M.R., Zarei, A., Gupta, H.V., Barnard, K. & Behrangi, A., (2021). “Nowcasting-Nets: Deep neural network structures for precipitation nowcasting using IMERG.” arXiv preprint arXiv:2108.06868. https://doi.org/10.48550/arXiv.2108.06868
Ehsani, M.R., Zarei, A., Gupta, H.V., Barnard, K., Lyons, E. & Behrangi, A. (2022). “NowCasting-Nets: Representation learning to mitigate latency gap of satellite precipitation products using convolutional and recurrent neural networks.” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-21, 2022, Art no. 4706021. https://doi.org/10.1109/TGRS.2022.3158888
Emanuel, K. [2020]. The Relevance of Theory for Contemporary Research in Atmospheres, Oceans and Climate. AGU Advances, 1, e2019AV000129. https://doi.org/10.1029/2019AV000129
Evans, K.J., Kennedy, J.H., Lu, D., Forrester, M.M., Price, S., Fyke, J., Bennett, A.R., et al. (2019). LIVVkit 2.1: automated and extensible ice sheet model validation. Geoscientific Model Development 12 (3), 1067-1086. https://doi.org/10.5194/gmd-12-1067-2019
Farley, A. & Condon, L. (2023). “Exploring the Signal Filtering Properties of Idealized Watersheds Using Spectral Analysis.” Advances in Water Resources, 178, August 2023, 104441. https://doi.org/10.1016/j.advwatres.2023.104441
Ferré, T.P.A., Klakovich, J., Gupta, H.V. & Ehsani, M.R. (2021). “Can Deep Learning Extract Useful Information about Energy Dissipation and Effective Hydraulic Conductivity from Gridded Conductivity Fields?.” Europe PMC: Preprints.org; 2021. https://doi.org/10.20944/preprints202104.0412.v1
Fleming, S.W. & Gupta, H.V. (2020). “The physics of river prediction.” Physics Today 73 (7), 46-52. https://doi.org/10.1063/PT.3.4523
Forrester, M.M., Condon, L.E. & Maxwell, R.M. (2019). “Hydrologic Representation Complexity in Land Surface Models Influences GRACE Signal Restoration in Forward Modeling Approaches.” AGU Fall Meeting Abstracts 2019, H43M-2234. https://ui.adsabs.harvard.edu/abs/2019AGUFM.H43M2234F/abstract
Frame, J. (2020). “Improving US Gulf Region Streamflow Predictions from the US National Water Model with Machine Learning.” GCAGS Transactions 70 (1), 233-234. https://archives.datapages.com/data/gcags/data/070/070001/233_gcags700233.htm
Frame, J., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L.M., et al. (2021). “Deep learning rainfall-runoff predictions of extreme events.” Hydrology and Earth System Sciences Discussions 2021, 1-20.
Frame, J., Nearing, G., Kratzert, F. & Rahman, M. (2020). “Post-processing the US national water model with a long short-term memory network.” EarthArXix: J. Am. Water Resour, in review. https://doi. org/10.31223/osf. io/4xhac
Frame, J.M., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L.M., et al. (2022). “Deep learning rainfall–runoff predictions of extreme events.” Hydrology and Earth System Sciences 26 (13), 3377-3392. https://doi.org/10.5194/hess-26-3377-2022
Frame, J.M., Kratzert, F., Raney, A., Rahman, M., Salas, F.R. & Nearing, G.S. (2021). “Post‐processing the national water model with long short‐term memory networks for streamflow predictions and model diagnostics.” JAWRA Journal of the American Water Resources Association 57 (6), 885-905. https://doi.org/10.1111/1752-1688.12964
Franzen, S.E., Farahani, M.A., & Goodwell, A.E. (2020). Information flows: Characterizing precipitation-streamflow dependencies in the Colorado Headwaters with an information theory approach. Water Resources Research, 56, e2019WR026133. https://doi.org/10.1029/2019WR026133
Gallagher, L.K., Farley, A.J., Chennault, C., Cerasoli, S., Jourdain, S., O’Leary, P., et al. (2022). “The ParFlow Sandtank: An interactive educational tool making invisible groundwater visible.” Frontiers in Water 4, 909918. https://doi.org/10.3389/frwa.2022.909918
Gallagher, L.K., Williams, J.M., Lazzeri, D., Chennault, C., Jourdain, S., O’leary, P., et al. (2021). “Sandtank-ML: an educational tool at the interface of hydrology and machine learning.” Water 13 (23), 3328. https://doi.org/10.3390/w13233328
Garland, J. and E. Bradley (2018), Information Theory in Earth and Space Science, SIAM News, October 1st, 2018. Full Garland reference.
Garland, J.; Jones, T.R.; Neuder, M.; Morris, V.; White, J.W.C.; Bradley, E. Anomaly Detection in Paleoclimate Records Using Permutation Entropy. Entropy 2018, 20, 931. https://doi.org/10.3390/e20120931
Garland, Joshua, et al. “A First Step Toward Quantifying the Climate’s Information Production over the Last 68,000 Years.” International Symposium on Intelligent Data Analysis. Springer, Cham, 2016. https://sinews.siam.org/Details-Page/information-theory-in-earth-and-space-science
Gauch, M., Kratzert, F., Gilon, O., Gupta, H., Mai, J., Nearing, G., Tolson, B., et al. (2022). “In Defense of Metrics: Metrics Sufficiently Encode Typical Human Preferences Regarding Hydrological Model Performance.” Water Resources Research 59 (6), e2022WR033918. https://doi.org/10.1029/2022WR033918
Gencaga, Deniz, Kevin H. Knuth, and William B. Rossow. “A recipe for the estimation of information flow in a dynamical system.” Entropy 17.1 (2015): 438-470.
Gerken, T., B.L. Ruddell, R. Yu, P.C. Stoy, and D.T. Drewry (2019), Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET, NPJ Climate and Atmospheric Science, 2:37, https://www.nature.com/articles/s41612-019-0094-4.
Gerken, T., Ruddell, B.L., Fuentes, J.D., Araujo, A., Brunsell, N.A., Maia, J., Manzi, A., Mercer, J., dos Santos, R.N., von Randow, C., and Stoy, P.C. (2017). Investigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforest. https://doi.org/10.1016/j.agrformet.2017.03.023
Gharari, S., Gupta, H.V., Clark, M.P., Hrachowitz, M., Fenicia, F., Matgen, P., et al. (2021). “Understanding the information content in the hierarchy of model development decisions: Learning from data.” Water Resources Research 57 (6), e2020WR027948. https://doi.org/10.1029/2020WR027948
Gharari, Shervan; Gupta, Hoshin V.; Clark, Martyn P.; Hrachowitz, Markus; Fenicia, Fabrizio; Matgen, Patrick; and Savenije, Hubert H.G. (2021). “Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning from data.” Water Resources Research, https://doi.org/10.1029/2020WR027948
Gleeson, T., Wagener, T., Döll, P., Zipper, S.C., West, C., Wada, Y., Taylor, R., et al. (2020). “HESS Opinions: Improving the evaluation of groundwater representation in continental to global scale models.” Hydrology and Earth System Sciences Discussions, 1-39. https://doi.org/10.5194/hess-2020-378
Glymour, Clark, Richard Scheines, Peter Spirtes, and Kevin Kelly. (1987). Discovering causal structure: Artificial intelligence, philosophy of science, and statistical modeling. Academic Press, ISBN 012286961.
Goldfeld, Z. & Polyanskiy, Y. (2020). “The Information Bottleneck Problem and its Applications in Machine Learning,” in IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 19-38, May 2020, doi: 10.1109/JSAIT.2020.2991561.
Gong, W., Gupta, H. V., Yang, D., Sricharan, K., and Hero, A. O. (2013) ‘Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach’, Water Resources Research, 49(4), pp. 2253-2273. Full Gong reference.
Gong, W., Yang, D., Gupta, H. V. and Nearing, G. (2014). Estimating information entropy for hydrological data: One-dimensional case, Water Resour. Res., 50, 5003–5018. Full Gong reference.
Goodwell, A. and Kumar, Praveen (2015). “Information Theoretic Measures to Infer Feedback Dynamics in Coupled Logistic Networks.” Entropy 17.11: 7468-7492.
Goodwell, A. E., et al. “Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought.” Proceedings of the National Academy of Sciences (2018): 201800236. https://doi.org/10.1371/journal.pone.0269193
Goodwell, A. E., Jiang, P., Ruddell, B. L., & Kumar, P. (2020). Debates—Does information theory provide a new paradigm for Earth science? Causality, interaction, and feedback. Water Resources Research, 56, e2019WR024940. https://doi.org/10.1029/2019WR024940
Goodwell, A.E. & Bassiouni, M. (2022). “Source relationships and model structures determine information flow paths in ecohydrologic models.” Water Resources Research, 28 June 2022, e2021WR031164. https://doi.org/10.1029/2021WR031164
Goodwell, A.E. & Kumar, P. (2017), Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables, Water Resour. Res., 53, 5920–5942, doi:10.1002/2016WR020216.
Goodwell, A.E., Jiang, P., Ruddell, B.L. & Kumar, P. (2020). Debates—Does information theory provide a new paradigm for Earth science? Causality, interaction, and feedback. Water Resources Research, 56, e2019WR024940. https://doi.org/10.1029/2019WR024940
Goodwell, Allison E., and Maoya Bassiouni. “Source relationships and model structures determine information flow paths in ecohydrologic models.” Water Resources Research: e2021WR031164. https://doi.org/10.1029/2021WR031164
Goodwell, Allison, and Nicholas Campbell. “An information theory-based approach to characterize drivers of upstream salmon migration.” PloS one 17.6 (2022): e0269193.
Goodwell, A.E., Kumara, P., Fellow, A.W., and Flerchinger, G. N. (2018). Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought. PNAS. Rodriguez-Iturbe, I. (ed.). Texas A&M University, College Station, TX. July 26, 2018. https://www.pnas.org/doi/epdf/10.1073/pnas.1800236115
Griffin, A. (2008): Maximum Entropy: The Universal Method for Inference. Dissertation at the University of Albany, New York.
Guo, D., Zheng, F., Gupta, H. & Maier, H.R. (2020). “On the robustness of conceptual rainfall‐runoff models to calibration and evaluation data set splits selection: A large sample investigation.” Water Resources Research 56 (3), e2019WR026752. https://doi.org/10.1029/2019WR026752
Gupta H.V., Ehsani, R.M., Roy, T., Sans-Fuentes, M.A., Ehret, U., and Behrangi, A. (2021). “Computing Accurate Probabilistic Estimates of One-D Entropy from Equiprobable Random Samples.” Section on Information Theory, Probability and Statistics, Entropy, 23(6), 740, doi.org/10.3390/e23060740
Gupta, H. & Razavi, S. (2017). “Challenges and future outlook of sensitivity analysis.” Sensitivity analysis in earth observation modelling, 397-415. https://doi.org/10.1016/B978-0-12-803011-0.00020-3
Gupta, H. & Razavi, S. (2017). “Chapter 20-Challenges and Future.” https://scholar.google.com/scholar?cluster=13327659972330540480&hl=en&oi=scholarr
Gupta, H. (2019). “Interactive comment on “Benchmarking a Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling” by Frederik Kratzert et al.
Gupta, H.V. & Razavi, S. (2018). “Revisiting the basis of sensitivity analysis for dynamical earth system models.” Water Resources Research 54 (11), 8692-8717. https://doi.org/10.1029/2018WR022668
Gupta, H.V. and Nearing, G.S. (2014). Debates—The future of hydrological sciences: A (common) path forward? Using models and data to learn: A systems theoretic perspective on the future of hydrological science, Water Resour. Res., 50, 5351–5359. http://onlinelibrary.wiley.com/doi/10.1002/2013WR015096/abstract
Gupta, H.V., Ehsani, M.R., Roy, T., Sans-Fuentes, M.A., Ehret, U. & Behrangi, A. (2021). “Computing accurate probabilistic estimates of one-D entropy from equiprobable random samples.” Entropy 23 (6), 740. https://doi.org/10.3390/e23060740
Guse, B., Herzog, A., Thober, S., Spieler, D., Melsen, L., Kiesel, J., Staudinger, M., et al. (2023). “Time-varying sensitivity analysis across different hydrological model structures, variables and time scales.” EGU23. https://doi.org/10.5194/egusphere-egu23-8423
Guse, B., Pfannerstill, M., Fohrer, N. & Gupta, H. (2020). “Improving information extraction from simulated discharge using sensitivity‐weighted performance criteria.” Water Resources Research 56 (9), e2019WR025605. https://doi.org/10.1029/2019WR025605
Guse, B., Pfannerstill, M., Kiesel, J., Strauch, M., Volk, M., Gupta, H. & Fohrer, N. (2020). “Simulated sensitivity time series and model performance in three German catchments.” GFZ Data Services. https://doi.org/10.5880/GFZ.4.4.2019.004
Hawkins, L.R., Bassouni, M., Anderegg, W.R.L., Venturas, MD., Good, S.P., et al. (2022). “Comparing Model Representations of Physiological Limits on Transpiration at a Semi‐arid Ponderosa Pine Site.” Journal of Advances in Modeling Earth Systems, (14)11, 29 Sept. 2022, e2021MS002927. https://doi.org/10.1029/2021MS002927
Hein, A., Condon, L. & Maxwell, R. (2018). “Unravelling the impacts of precipitation, temperature and land-cover change for extreme drought over the North American High Plains.” Hydrology and Earth System Sciences Discussions, 1-30. https://doi.org/10.5194/hess-2018-485
Hein, A., Condon, L. & Maxwell, R. (2019). “Evaluating the relative importance of precipitation, temperature and land-cover change in the hydrologic response to extreme meteorological ….” Hydrology and Earth System Sciences 23 (4), 1931-1950. https://doi.org/10.5194/hess-23-1931-2019
Hejazi, M.I., X. Cai, and B.L. Ruddell (2008). The role of hydrologic information in reservoir operation – Learning from historical releases, Advances in Water Resources. Full Hejazi reference.
Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441, 1–46.
Hlinka, Jaroslav, et al. “Reliability of inference of directed climate networks using conditional mutual information.” Entropy 15.6 (2013): 2023-2045.
Hooper, R.P., Nearing, G.S. & Condon, L.E. (2017). “Using the National Water Model as a hypothesis-testing tool.” CUAHSI Hydroinformatics Conference (2017: Tuscaloosa, Alabama). https://ir.ua.edu/handle/123456789/4001
Hull, R., Leonarduzzi, E., De La Fuente, L., Tran, H.V., Bennett, A., Melchior, P., et al. (2022). “Using simulation-based inference to determine the parameters of an integrated hydrologic model: a case study from the upper Colorado River basin.” Hydrology and Earth System Sciences Discussions, 1-38. https://doi.org/10.5194/hess-2022-345
Huo, X., Gupta, H., Niu, G.Y., Gong, W. & Duan, Q. (2019). “Parameter sensitivity analysis for computationally intensive spatially distributed dynamical environmental systems models.” Journal of Advances in Modeling Earth Systems 11 (9), 2896-2909. https://doi.org/10.1029/2018MS001573
James, R. G., Barnett, N. and Crutchfield, J. P. (2016) ‘Information Flows? A Critique of Transfer Entropies’, Physical Review Letters, 116(23).
Janssen, J., Guan, V., & Robeva, E. (2023, April). Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees. In International Conference on Artificial Intelligence and Statistics (pp. 10782-10814). PMLR.
Jiang, P. and Kumar, P. (2018). “Interactions of information transfer along separable causal paths,” Phys. Rev. E 97, 042310.
Jiang, P. and Kumar, P. (2019) “Using Information Flow for Whole System Understanding from Component Dynamics.” Water Resources Research. https://doi.org/10.1029/2019WR025820
Jiang, P. and Kumar, P. (2020) “Bundled Causal History Interaction.” Entropy 2020, 22(3), 360; https://doi.org/10.3390/e22030360
Jiang, Peishi, and Kumar, P. (2019) “Information transfer from causal history in complex system dynamics.” Physical Review E 99.1: 012306. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012306
Jiang, X., Gupta, H.V., Liang, Z. & Li, B. (2019). “Toward improved probabilistic predictions for flood forecasts generated using deterministic models.” Water Resources Research 55 (11), 9519-9543. https://doi.org/10.1029/2019WR025477
Kennedy, J.H., Bennett, A.R., Evans, K.J., Price, S., Hoffman, M., Lipscomb, W.H., et al. (2017). LIVVkit: An extensible, python‐based, land ice verification and validation toolkit for ice sheet models. Journal of Advances in Modeling Earth Systems 9 (2), 854-869. https://doi.org/10.1002/2017MS000916
Khatami, S., Di Baldassarre, G., Gupta, H., Moallemi, E.A. & Pool, S. (2022). “Suggesting a new diagram and convention for characterizing and reporting model performance.” EGU General Assembly Conference Abstracts, EGU22-8211. https://doi.org/10.5194/egusphere-egu22-8211
Kiesel, J., Stanzel, P., Kling, H., Jähnig, S., Fohrer, N., and Pechlivanidis, I.G. (2020). “Streamflow-based evaluation of climate model sub-selection methods for impact assessments.” Climatic Change, https://doi.org/10.1007/s10584-020-02854-8
Knoben, W.J.M., Clark, M.P., Bales, J., Bennett, A., Gharari, S., Marsh, C.B., et al. (2022). Community Workflows to Advance Reproducibility in Hydrologic Modeling: Separating Model‐Agnostic and Model‐Specific Configuration Steps in Applications of Large‐Domain … Water Resources Research 58 (11), e2021WR031753. https://doi.org/10.1029/2021WR031753
Knuth, K. H. (2002). “What Is A Question?” In: C. Williams (ed.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Moscow ID 2002, AIP Conference Proceedings vol. 659, American Institute of Physics, Melville NY, pp. 227-242. Full Knuth reference.
Knuth, K. H. (2004) ‘What is a question?’ Full Knuth reference.
Knuth, K. H. (2010). ‘Information physics: The new frontier’. Full Knuth reference.
Knuth, Kevin H., et al. “Revealing relationships among relevant climate variables with information theory.” arXiv preprint arXiv:1311.4632 (2013).
Koutsoyiannis, Demetris. (2005). “Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling/Incertitude, entropie, effet d’échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et échelle d’état.” Hydrological Sciences Journal 50.3.
Krich, Christopher, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez‑Priego, Tarek S. El-Madany, Arnaud Carrara, and Miguel D. Mahecha. “Causal networks of biosphere–atmosphere interactions.” Biogeosciences, 17, 1033–1061, 2020. https://doi.org/10.5194/bg-17-1033-2020
Kuffour, B.N.O., Engdahl, N.B., Woodward, C.S., Condon, L.E., Kollet, S., et al. (2020). “Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated ….” Geoscientific Model Development 13 (3), 1373-1397. https://doi.org/10.5194/gmd-13-1373-2020
Kumar, P. and Ruddell, B.L. (2010). Information Driven Ecohydrologic Self-Organization. Entropy 2010, 12, 2085–2096.
Kumar, P., & Gupta, H. V. (2020). Debates—Does Information Theory provide a new paradigm for Earth Science?. Water Resources Research, 56, e2019WR026398. https://doi.org/10.1029/2019WR026398
Lahmers, T.M., Gupta, H., Castro, C.L., Gochis, D.J., Yates, D., Dugger, A., et al. (2019). “Enhancing the structure of the WRF-hydro hydrologic model for semiarid environments.” Journal of Hydrometeorology 20 (4), 691-714. https://doi.org/10.1175/JHM-D-18-0064.1
Lahmers, T.M., Hazenberg, P., Gupta, H., Castro, C., Gochis, D., Dugger, A., et al. (2021). “Evaluation of NOAA national water model parameter calibration in semiarid environments prone to channel infiltration.” Journal of Hydrometeorology 22 (11), 2939-2969. https://doi.org/10.1175/JHM-D-20-0198.1
Larsen, Laurel G., et al. “Complex networks of functional connectivity in a wetland reconnected to its floodplain.” Water Resources Research 53.7 (2017): 6089-6108.
Leonarduzzi, E., Tran, H., Bansal, V., Hull, R.B., De la Fuente, L., Bearup, L.A., et al. (2022). “Training machine learning with physics-based simulations to predict 2D soil moisture fields in a changing climate.” Frontiers in Water 4, 927113. https://doi.org/10.3389/frwa.2022.927113
Leung, L. and North, G. (1990). Information Theory and Climate Prediction. Journal of Climate, V 3.
Lindley D.V. (1956). On the measure of information provided by an experiment. Ann. Math. Statist. 27, 986–1005.
Lipscomb, W.H., Price, S.F. Hoffman,, M.J., Leguy, G.R., Bennett, A.R.,. Bradley, S.L., et al. (2019). Description and evaluation of the community ice sheet model (CISM) v2. 1. Geoscientific Model Development 12 (1), 387-424. https://doi.org/10.5194/gmd-12-387-2019
Loritz, R. & Gupta, H. (2023). “Extrapo… what? Predictions beyond the support of the training data.” EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1526. https://doi.org/10.5194/egusphere-egu23-1526
MacKay, D. J. (2003) Information theory, inference and learning algorithms. Cambridge University Press.
Maghami, I., Van Beusekom, A., Hay, L., Li, Z., Bennett, A., Choi, Y.D., Nijssen, B., et al. (2023). Building cyberinfrastructure for the reuse and reproducibility of complex hydrologic modeling studies. Environmental Modelling & Software 164, 105689. https://doi.org/10.1016/j.envsoft.2023.105689
Maier, H.R., Zheng, F., Wu, W.,C Dandy, G.C., Gupta, H. & Zhang, T. (2018). “Does predictive validation increase or decrease the uncertainty associated with environmental model outputs?.” iEMSs 9th International Congress on Environmental Modeling and Software, June 2018. https://scholarsarchive.byu.edu/iemssconference/2018/Stream-F/34/
Majda, A. & Gershgorin, B. (2010). “Quantifying uncertainty in climate change science through empirical information theory.” Proceedings of the National Academy of Sciences 107.34: 14958-14963.
Mathevet, T., Gupta, H., Perrin, C., Andréassian, V. & Le Moine, N. (2020). “Assessing the performance and robustness of two conceptual rainfall-runoff models on a worldwide sample of watersheds.” Journal of Hydrology 585, 124698. https://doi.org/10.1016/j.jhydrol.2020.124698
Mathevet, T., Le Moine, N., Andréassian, V., Gupta, H. & Oudin, L. (2023). “Multi-objective assessment of hydrological model performances using Nash–Sutcliffe and Kling–Gupta efficiencies on a worldwide large sample of watersheds.” Comptes Rendus. Géoscience 355 (S1), 1-25. https://doi.org/10.5802/crgeos.189
Maxwell, R.M., Condon, L.E. & Melchior, P. (2021). “A physics-informed, machine learning emulator of a 2d surface water model: What temporal networks and simulation-based inference can help us learn about hydrologic processes.” Water 13 (24), 3633. https://doi.org/10.3390/w13243633
Meles, M.B., Goodrich, D.C., Gupta, H.V., Burns, I.S., Unkrich, C.L., Razavi, S., et al. (2021). “Multi-criteria, time dependent sensitivity analysis of an event-oriented, physically-based, distributed sediment and runoff model.” Journal of Hydrology 598, 126268. https://doi.org/10.1016/j.jhydrol.2021.126268
Mizukami, N., Rakovec, O., Newman, A.J., Clark, M.P., Wood, A.W., Gupta, H.V., et al. (2019). “On the choice of calibration metrics for “high-flow” estimation using hydrologic models.” Hydrology and Earth System Sciences 23 (6), 2601-2614. https://doi.org/10.5194/hess-23-2601-2019
Moges, E. et al., (2022), HydroBench, GitHub. https://github.com/EMscience/HydroBench
Moges, E., et al. (2022), HydroBench: Jupyter supported reproducible hydrological model benchmarking and diagnostic tool, Frontiers in Earth Science, No.30, September 2022. https://doi.org/10.3389/feart.2022.884766
Moges, E., Ruddell, B. L., Zhang, L., Driscoll, J. M., & Larsen, L. G. Strength and memory of precipitation’s control over streamflow across the conterminous United States. Water Resources Research, e2021WR030186. https://doi.org/10.1029/2021WR030186
Moghaddam, M.A., Ferre, P.A.T., Ehsani, M.R., Klakovich, J. & Gupta, H.V. (2021). “Can deep learning extract useful information about energy dissipation and effective hydraulic conductivity from gridded conductivity fields?.” Water 13 (12), 1668. https://doi.org/10.3390/w13121668
Moghaddam, M.A., Ferre, T., Klakovich, J., Gupta, H.V. & Ehsani, M.R. (2022). “Can Machine Learning Extract Useful Information about Energy Dissipation and Effective Hydraulic Conductivity from Gridded Conductivity Fields?.” Authorea. 7 Dec. 2020. https://doi.org/10.1002/essoar.10505220.1
Naderi, M. & Gupta, H.V. (2020). “On the reliability of variable‐rate pumping test results: Sensitivity to information content of the recorded data.” Water Resources Research 56 (5), e2019WR026961. https://doi.org/10.1029/2019WR026961
Naeini, M.R., Analui, B., Gupta, H.V., Duan, Q. & Sorooshian, S. (2019). “Three decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: Review and applications.” Scientia Iranica 26 (4), 2015-2031. https://doi.org/10.24200/sci.2019.21500
Nearing, G. & Gupta, H. (2017). “Information vs. Uncertainty as the Foundation for a Science of Environmental Modeling.” arXiv preprint arXiv:1704.07512. https://doi.org/10.48550/arXiv.1704.07512
Nearing, G. S. and Gupta, H. V. (2015). The quantity and quality of information in hydrologic models, Water Resour. Res., 51, 524–538. Full Nearing reference.
Nearing, G. S., Gupta, H. V. and Crow, W. T. (2013). Information loss in approximately Bayesian estimation techniques: A comparison of generative and discriminative approaches to estimating agricultural productivity. Journal of Hydrology 507, 163-173. Full Nearing reference.
Nearing, G. S., Gupta, H. V., Crow, W. T. and Gong, W. (2013b). ‘An approach to quantifying the efficiency of a Bayesian filter’, Water Resources Research, 49(4), pp. 2164-2173.
Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., & Peters-Lidard, C. (2018). Benchmarking and Process Diagnostics of Land Models. Journal of Hydrometeorology, (2018). https://doi.org/10.1175/JHM-D-17-0209.1.
Nearing, G. S., Ruddell, B., Clark, M. P. and Nissan, B. (2017) “Process-Level Diagnostics of Terrestrial Hydrology Models.” American Meteorological Society 31st conference on Hydrology, Seattle, WA USA.
Nearing, G. S., Ruddell, B. L., Bennett, A. R., Prieto, C., & Gupta, H. V. (2020). Does information theory provide a new paradigm for earth science? Hypothesis testing. Water Resources Research, 56, e2019WR024918. https://doi.org/10.1029/2019WR024918
Nearing, G., Kratzert, F., Klotz, D., Hoedt, P.J., Klambauer, G., Hochreiter, S., et al. (2020). “A deep learning architecture for conservative dynamical systems: Application to rainfall-runoff modeling.” NeurIPS AI for Earth Sciences workshop (2020). https://research.google/pubs/pub49994/
Nearing, G.S. & Gupta, H.V. (2018). “Ensembles vs. information theory: supporting science under uncertainty.” Frontiers of Earth Science 12, 653-660. https://doi.org/10.1007/s11707-018-0709-9
Nearing, G.S. Moran, M.S. Scott, R.L. & Ponce-Campos, G. (2012) ‘Coupling diffusion and maximum entropy models to estimate thermal inertia’, Remote Sensing of Environment, 119, pp. 222-231. Full Nearing reference.
Nearing, G.S., Klotz, D., Frame, J.M., Gauch, M., Gilon, O., Kratzert, F., et al. (2022). “Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks.” Hydrology and Earth System Sciences 26 (21), 5493-5513. https://doi.org/10.5194/hess-26-5493-2022
Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., et al. (2021). “What role does hydrological science play in the age of machine learning?.” Water Resources Research 57 (3), e2020WR028091. https://doi.org/10.1029/2020WR028091
Nearing, G.S., Pelissier, C.S., Kratzert, F., Klotz, D., Gupta, H.V., Frame, J.M., et al. (2019). “Physically informed machine learning for hydrological modeling under climate nonstationarity.” UMBC Faculty Collection. http://hdl.handle.net/11603/19521
Nearing, G.S., Ruddell, B.L., Bennett, A.R., Prieto, C. & Gupta, H.V. (2020). Does information theory provide a new paradigm for earth science? Hypothesis testing. Water Resources Research 56 (2), e2019WR024918. https://doi.org/10.1029/2019WR024918
Nearing, Grey and Gupta, Hoshin (2017). “Information vs. Uncertainty as the Foundation for a Science of Environmental Modeling.” Full Nearing reference.
Nearing, Grey S., et al. (2013). “A philosophical basis for hydrological uncertainty.” Hydrological Sciences Journal 61.9 (2016): 1666-1678.An information-theoretical perspective on weighted ensemble forecasts SV Weijs, N Van De Giesen – Journal of Hydrology.
Neuper, M. & Ehret, U. (2019). “Quantitative precipitation estimation with weather radar using a data-and information-based approach.” Hydrology and Earth System Sciences 23 (9), 3711-3733. https://doi.org/10.5194/hess-23-3711-2019
Nowack, P., Runge, J., Eyring, V. et al. (2020) “Causal networks for climate model evaluation and constrained projections.” Nat Commun 11, 1415. https://doi.org/10.1038/s41467-020-15195-y
Olbrich, E., Bertschinger, N., and Rauh, J. (2015). Information Decomposition and Synergy. Entropy pp. 3501–3517.
O’neill, M.M.F., Tijerina, D.T., Condon, L.E. & Maxwell, R.M. (2021). “Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States.” Geoscientific Model Development 14 (12), 7223-7254. https://doi.org/10.5194/gmd-14-7223-2021
Papalexiou, Simon Michael, and Koutsoyiannis, Demetris (2012). “Entropy-based derivation of probability distributions: A case study to daily rainfall.” Advances in Water Resources 45: 51-57. Lessons from the long flow records of the Nile: determinism vs indeterminism and maximum entropy D Koutsoyiannis, A Georgakakos – 2006
Pechlivanidis, I. G., Jackson, B., McMillan, H. and Gupta, H. V. (2016). Robust informational entropy-based descriptors of flow in catchment hydrology. Hydrological Sciences Journal 61 (1), 1-18. Full Pechlivanidis reference.
Pechlivanidis, I. G., Jackson, B., McMillan, H. K., & Gupta, H. V. (2012). Using an informational entropy-based metric as a diagnostic of flow duration to drive model parameter identification. Global NEST Journal, 14(3), 325–334.
Pechlivanidis, I. G., Jackson, B., McMillan, H., & Gupta, H. (2014). Use of an entropy-based metric in multiobjective calibration to improve model performance. Water Resources Research, 50(10), 8066–8083. https://doi.org/10.1002/2013WR014537
Pechlivanidis, I.G., Gupta, H., and Bosshard, T. (2018). “An Information Theory Approach to identifying a representative subset of hydro-climatic simulations for impact modeling studies.” Water Resources Research, doi:10.1029/2017WR022035.
Pelissier, C., Frame, J. & Nearing, G. (2020). “Combining parametric land surface models with machine learning.” IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium …. https://ieeexplore.ieee.org/abstract/document/9324607/
Perdigão, R. A. P., Ehret, U., Knuth, K. H., & Wang, J. ( 2020). Debates: Does information theory provide a new paradigm for Earth science? Emerging concepts and pathways of information physics. Water Resources Research, 56, e2019WR025270. https://doi.org/10.1029/2019WR025270
Pires, C. A. L. and R. A. P. Perdigao (2012). Minimum Mutual Information and Non-Gaussianity Through the Maximum Entropy Method: Theory and Properties. Entropy 2012, 14, 1103-1126; Full Pires reference.
Pompe, Bernd, and Jakob Runge. “Momentary information transfer as a coupling measure of time series.” Physical Review E 83.5 (2011): 051122. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.051122
Pothapakula, Praveen Kumar, Cristina Primo, and Bodo Ahrens. “Quantification of Information Exchange in Idealized and Climate System Applications.” Entropy 21.11 (2019): 1094. https://doi.org/10.3390/e21111094
Purawat, S., Olschanowsky, C., Condon, L.E., Maxwell, R. & Altintas, I. (2020). “Scalable Workflow-Driven Hydrologic Analysis in HydroFrame.” Computational Science–ICCS 2020: 20th International Conference, Amsterdam …. https://doi.org/10.1007/978-3-030-50371-0_20
Qiu, J., Crow, W. T., Nearing, G. S., Mo, X. and Liu, S. (2014). The impact of vertical measurement depth on the information content of soil moisture times series data, Geophys. Res. Lett., 41, 4997–5004. Full Qui reference.
Quijano, Juan, and Henry Lin. “Entropy in the critical zone: a comprehensive review.” Entropy 16.6 (2014): 3482-3536. Full Quijano and Lin reference.
Razavi, S. & Gupta, H.V. (2019). “A multi-method Generalized Global Sensitivity Matrix approach to accounting for the dynamical nature of earth and environmental systems models.” Environmental modelling & software 114, 1-11. https://doi.org/10.1016/j.envsoft.2018.12.002
Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., et al. (2021). “The future of sensitivity analysis: An essential discipline for systems modeling and policy support.” Environmental Modelling & Software 137, 104954. https://doi.org/10.1016/j.envsoft.2020.104954
Razavi, S., Sheikholeslami, R., Gupta, H.V. & Haghnegahdar, A. (2019). “VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis.” Environmental modelling & software 112, 95-107. https://doi.org/10.1016/j.envsoft.2018.10.005
Rosas, F.E., Mediano, P.A.M., Jensen, H.J., Seth, A.K., Barrett, A.B., Carhart-Harris, R.L. & Bor, D. (2020). Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data. PLOS Computational Biology. December 21, 2020. https://doi.org/10.1371/journal.pcbi.1008289
Roy, T. & Gupta, H. (2021). “How certain are our uncertainty bounds? Accounting for sample variability in Monte Carlo-based uncertainty estimates.” Environmental Modelling & Software 136, 104931. https://doi.org/10.1016/j.envsoft.2020.104931
Roy, T., Gupta, H.V., Serrat-Capdevila, A. & Valdes, J.B. (2017). “Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model.” Hydrology and Earth System Sciences 21 (2), 879-896. https://doi.org/10.5194/hess-21-879-2017
Roy, T., Serrat-Capdevila, A., Valdes, J., Durcik, M. & Gupta, H. (2017). “Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform.” Journal of Hydroinformatics 19 (6), 911-919. https://doi.org/10.2166/hydro.2017.111
Roy, T., Valdés, J.B., Serrat-Capdevila, A., Durcik, M., Demaria, E.M.C., et al. (2020). “Detailed Overview of the multimodel multiproduct streamflow forecasting platform.” Journal of Applied Water Engineering and Research 8 (4), 277-289. https://doi.org/10.1080/23249676.2020.1799442
Ruddell, B. L. and Kumar, P. (2009a). “Ecohydrologic process networks: 1. Identification,” Water Resources Research, 45(3).
Ruddell, B. L. and Kumar, P. (2009b). “Ecohydrologic process networks: 2. Analysis and characterization,” Water Resources Research, 45(3), pp. W03420.
Ruddell, B. L., Yu, R., Kang, M. and Childers, D. L. (2015). ‘Seasonally varied controls of climate and phenophase on terrestrial carbon dynamics: modeling eco-climate system state using Dynamical Process Networks’, Landscape Ecology, pp. 1-16.
Ruddell, B.L., Drewry, D.T. & Nearing, G.S. (2019). Information Theory for Model Diagnostics: Structural Error is Indicated by Trade-Off Between Functional and Predictive Performance. Water Resources Research v55, 8, 6534-6554. https://doi.org/10.1029/2018WR023692
Ruddell, B.L., Clark, M., Driscoll, J.M., Gochis, D., Gupta, H., Huntzinger, D., et al. (2023). “Calling for a National Model Benchmarking Facility.” EarthArXiv. 14 Apr 2023. https://doi.org/10.31223/X5195Q
Ruddell, B.L., N.A. Brunsell and P. Stoy (2013). Applying information theory to quantify process uncertainty, feedback, and scale in the Earth system. EoS, 94, 56. Full Ruddell reference.
Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos 1 July 2018; 28 (7): 075310. https://doi.org/10.1063/1.5025050
Runge, J., Bathiany, S., Bollt, E. et al. (2019). Inferring causation from time series in Earth system sciences. Nat Commun 10, 2553. https://doi.org/10.1038/s41467-019-10105-3
Runge, J., Heitzig, J., Petoukhov, V., and Kurths, J. (2012). Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 108.
Runge, Jakob, et al. “Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy.” Physical Review E 86.6 (2012): 061121.
Runge, Jakob, Reik V. Donner, and Jürgen Kurths. “Optimal model-free prediction from multivariate time series.” Physical Review E 91.5 (2015): 052909.
Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461.
Sebastiani P. and Wynn H.P. (2000). Maximum entropy sampling and optimal Bayesian experimental design. J. Roy. Stat. Soc. B, 62:145-157, 2000.
Seibert, S.P., Jackisch, C., Ehret, U., Pfister, L. & Zehe, E. (2017). “Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics.” Hydrology and Earth System Sciences 21 (6), 2817-2841. https://doi.org/10.5194/hess-21-2817-2017
Sendrowski, A., Sadid, K., Meselhe, E., Wagner, W., Mohrig, D., and Passalacqua, P. (2018). “Transfer Entropy as a Tool for Hydrodynamic Model Validation” Entropy 20, no. 1: 58. https://doi.org/10.3390/e20010058
Shannon C.E. and Weaver, W. (1949). The Mathematical Theory of Information, University of Illinois Press, Urbana IL.
Sharma, A. and Mehrotra, R. (2014), An information-theoretic alternative to model a natural system using observational information alone, Water Resour. Res., 50, 650–660, doi:10.1002/2013WR013845.
Sheikholeslami, R., Razavi, S., Gupta, H.V., Becker, W. & Haghnegahdar, A. (2018). “Addressing Curse of Dimensionality in Global Sensitivity Analysis of Large Environmental Models: An Automated Grouping Strategy.” iEMSs 9th International Congress on Environmental Modeling and Software, June 2018. https://scholarsarchive.byu.edu/iemssconference/2018/Stream-E/22/
Sheikholeslami, R., Razavi, S., Gupta, H.V., Becker, W. & Haghnegahdar, A. (2019). “Global sensitivity analysis for high-dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost.” Environmental modelling & software 111, 282-299. https://doi.org/10.1016/j.envsoft.2018.09.002
Shen, C., Appling, A.P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., et al. (2023). “Differentiable modeling to unify machine learning and physical models and advance Geosciences.” arXiv preprint arXiv:2301.04027. 10 Jan 2023. https://doi.org/10.48550/arXiv.2301.04027
Singh, V.P. (2014). Introduction to Entropy Theory in Hydraulic Engineering. 784 pp., ASCE Press, Reston, Virginia, 2014.
Smirnov, D.A. (2013). Spurious causalities with transfer entropy. Phys. Rev. E 87.
Stevens, B. (2020). The Perils of Computing Too Much and Thinking Too Little. https://eos.org/editor-highlights/the-perils-of-computing-too-much-and-thinking-too-little.
Su, Z., Zeng, Y., Romano, N., Manfreda, S., Francés, F., Ben Dor, E., et al. (2020). “An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources.” Water 2020, 12(5), 1495. https://doi.org/10.3390/w12051495
Thiesen, S. and Ehret, U. (2021). “Assessing local and spatial uncertainty with nonparametric geostatistics.” Stochastic Environmental Research and Risk Assessment (2022) 36:173–199. https://link.springer.com/article/10.1007%2Fs00477-021-02038-5
Thiesen, S., Darscheid, P., and Uwe Ehret. (2019). Identifying rainfall-runoff events in discharge time series: a data-driven method based on information theory. European Geosciences Union, v23, 2. HESS, 23, 1015–1034, 2019. https://doi.org/10.5194/hess-23-1015-2019
Thiesen, S., Vieira, D.M., Mälicke, M., Loritz, R., Wellmann, J.F. & Ehret, U. (2020). “Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics.” Hydrology and Earth System Sciences 24 (9), 4523-4540. https://doi.org/10.5194/hess-24-4523-2020
Tijerina, D., Condon, L., FitzGerald, K., Dugger, A., O’Neill, M.M., Sampson, K., et al. (2021). “Continental hydrologic intercomparison project, phase 1: A large‐scale hydrologic model comparison over the continental United States.” Water Resources Research 57 (7), e2020WR028931. https://doi.org/10.1029/2020WR028931
Tononi, G. (2011). ‘Integrated information theory of consciousness: an updated account’, Archives italiennes de biologie, 150(2-3), pp. 56-90.
Tran, H., Leonarduzzi, E., De la Fuente, L., Hull, R.B., Bansal, V., Chennault, C., et al. (2021). “Development of a deep learning emulator for a distributed groundwater–surface water model: ParFlow-ML.” Water 13 (23), 3393. https://doi.org/10.3390/w13233393
Van Beusekom, A.E., Hay, L.E., Bennett, A.R., Choi, Y.D., Clark, M.P. & Goodall, J.L., et al. (2022). Hydrologic Model Sensitivity to Temporal Aggregation of Meteorological Forcing Data: A Case Study for the Contiguous United States. Journal of Hydrometeorology 23 (2), 167-183. https://doi.org/10.1175/JHM-D-21-0111.1
Vejmelka, M. and Paluš, M. (2008). Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E 2008, 77.
Wang, J. F. and Bras, R. L. (2011). “A model of evapotranspiration based on the theory of maximum entropy production,” Water Resources Research, 47. Full Wang reference.
Wang, Y.H., Gupta, H.V., Zeng, X. & Niu, G.Y. (2022). “Exploring the Potential of Long Short‐Term Memory Networks for Improving Understanding of Continental‐and Regional‐Scale Snowpack Dynamics.” Water Resources Research 58 (3), e2021WR031033. https://doi.org/10.1029/2021WR031033
Weijs, S. V., & Ruddell, B. L. (2020). Debates: Does information theory provide a new paradigm for earth science? Sharper predictions using Occam’s digital razor. Water Resources Research, 56, e2019WR026471. https://doi.org/10.1029/2019WR026471
Weijs, S. V., Ronald Van Nooijen, and Nick Van De Giesen (2011). “Kullback–Leibler divergence as a forecast skill score with classic reliability–resolution–uncertainty decomposition.” Monthly Weather Review 138.9 (2010): 3387-3399. Accounting for observational uncertainty in forecast verification: an information-theoretical view on forecasts, observations, and truth SV Weijs, N Van De Giesen – Monthly Weather Review
Weijs, S. V., Schoups, G. and Giesen, N. (2010). ‘Why hydrological predictions should be evaluated using information theory’, Hydrology and Earth System Sciences, 14(12), pp. 2545-2558.
Weijs, S. V., van de Giesen, Nick and Parlange, Marc B. (2013). “HydroZIP: how hydrological knowledge can be used to improve compression of hydrological data.” Entropy 15.4 (2013): 1289-1310. Data compression to define information content of hydrological time series SV Weijs, N Van De Giesen, MB Parlange – Hydrology and Earth System Sciences.
Weijs, S.V., & Ruddell, B.L. (2020). Debates: Does information theory provide a new paradigm for earth science? Sharper predictions using Occam’s digital razor. Water Resources Research, 56, e2019WR026471. https://doi.org/10.1029/2019WR026471
Williams, P. L. and Beer, R. D. (2010). Nonnegative decomposition of multivariate information.
Wu, G., Xu, J., Gupta, H. & ZHANG, X. (2019). “The “abcd” Water Balance Model: Application to Xin’an River Basin and Sensitivity Analysis.” Journal of Yangtze River Scientific Research Institute 36 (7), 23. https://doi.org/10.11988/ckyyb.20171318
Wu, M., Vico, G., Manzoni, S., Cai, Z., Bassiouni, M., Tian, F., Zhang, J., et al. (2021). “Early growing season anomalies in vegetation activity determine the large‐scale climate‐vegetation coupling in Europe.” Journal of Geophysical Research: Biogeosciences, 126 (5), May 2021, e2020JG006167. https://doi.org/10.1029/2020JG006167
Yu, R., Ruddell, B.L., Kang, M., Kim, J., & Childers, D. (2019). Anticipating global terrestrial ecosystem state change using FLUXNET. Global change biology. https://doi.org/10.1111/gcb.14602 Full Yu reference.
Zhang, J., Gao, G., Fu, B. & Gupta, H.V. (2019). “Formulating an elasticity approach to quantify the effects of climate variability and ecological restoration on sediment discharge change in the Loess Plateau, China.” Water Resources Research 55 (11), 9604-9622. https://doi.org/10.1029/2019WR025840
Zhang, J., Gao, G., Li, Z., Fu, B. & Gupta, H.V. (2020). “Identification of climate variables dominating streamflow generation and quantification of streamflow decline in the Loess Plateau, China.” Science of the Total Environment 722, 137935. https://doi.org/10.1016/j.scitotenv.2020.137935
Zheng, F., Chen, J., Ma, Y., Chen, Q., Maier, H.R. & Gupta, H. (2023). “A Robust Strategy to Account for Data Sampling Variability in the Development of Hydrological Models.” Water Resources Research 59 (3), e2022WR033703. https://doi.org/10.1029/2022WR033703
Zheng, F., Chen, J., Maier, H.R. & Gupta, H. (2022). “Achieving Robust and Transferable Performance for Conservation‐Based Models of Dynamical Physical Systems.” Water Resources Research 58 (5), e2021WR031818. https://doi.org/10.1029/2021WR031818
Zheng, F., Maier, H.R., Wu, W., Dandy, G.C., Gupta, H.V. & Zhang, T. (2018). “On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: Demonstration for data‐driven models.” Water Resources Research 54 (2), 1013-1030. https://doi.org/10.1002/2017WR021470