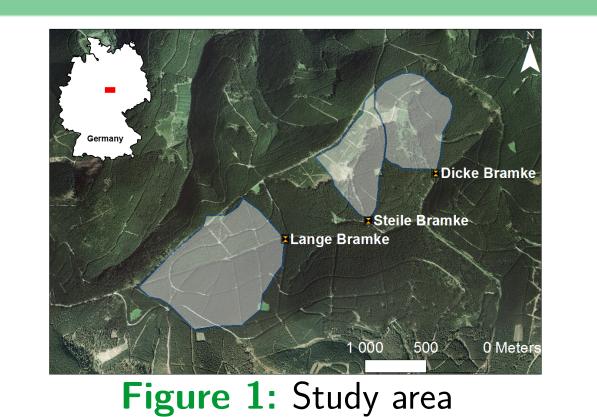
Schneeferner Workshop 2023 11-13 Sept. 2023


Complexity Measures as Tools for Delineating the Possible from the Impossible in Catchment Modelling Michael Hauhs¹ and Holger Lange²

Introduction

- First-order catchments are appropriate for both runoff measurements and forest monitoring
- Modelling approaches in hydrology and forest science are rather different
- can they inform each other or are they mutually incompatible?
- **Goal:** integrate typical modelling perspectives in hydrology and forest science

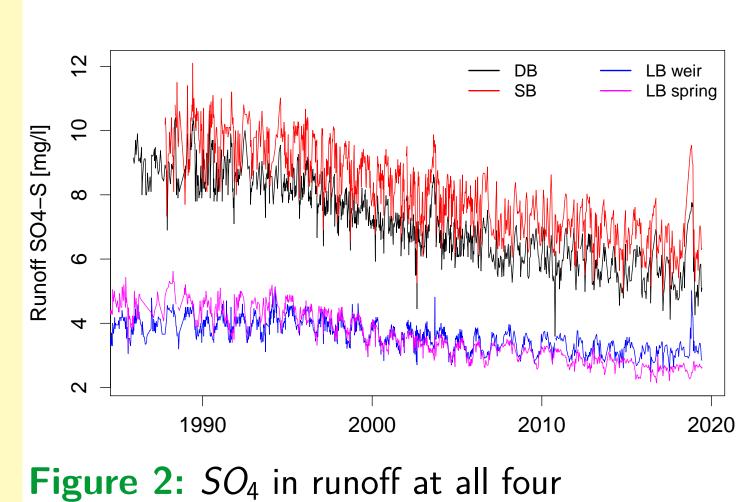
Study Area

- four (sub)catchments in the Harz Mountains: Lange Bramke (spring area, weir), Dicke Bramke and Steile Bramke
- Hydrology monitored since 1948, atmospheric deposition, water chemistry since the 1980ies,

• **Method:** characterize data sets by complexity measures

Key Monitoring Results

- runoff responds to catchment-wide events (liming, atmospheric deposition)
- SO_4 (Fig.2) budgets differ and show decreasing trends
- stand biomass indicates spatial homogeneous site quality
- tree growth identifies site quality, but it changes between subsequent rotation periods (Fig.3; monitored 1889-1914)


Empirical Interpretation of Catchment Response

forestry monitored 1988-2023

forest stand killed by bark beetle since 2021

Data

- four catchments, weekly to biweekly sampling • Variables: pH, Ca²⁺, Mg²⁺, Na⁺, K⁺, Cl⁻, NO₃⁻, SO₄²⁻
- repeated inventories of standing timber volume
- analysed period: 1980ies-2020

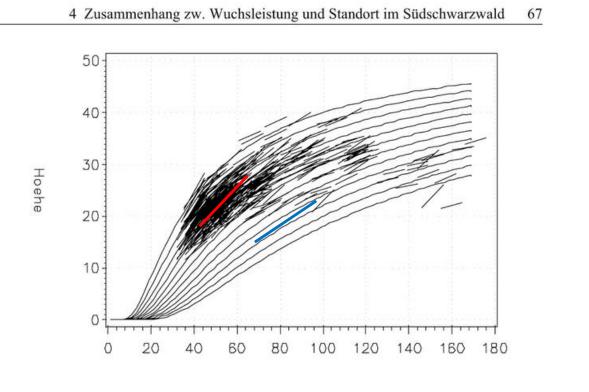


Figure 3: Height growth Norway spruce in Southern Germany. Lange Bramke in red (1988-2019) and blue (1889-1914). after: Teuffel et al. 2007

• Modelling task example: explain storage and transport of SO₄

+ Logistic Map ***** Quadratic Map Schuster Map

knoise

Skew Tent Map

• Modelling task example: identify processes (climate, nutrients, water) behind the change in site index

Model paradigms:

hydrology

- fluxes at boundaries (rain, runoff)
- monitor budget (mass conservation)
- runoff reflects soil states
- identify processes by inverse modelling
- abstract as algebra

torest science

- concentrations at boundaries (moisture, nutrients)
- monitor events (damage, intervention)
- tree level: soil states represent input fluxes

- adaptation through tree-soil interaction
- abstract as coalgebra(?)

Measures of Information and Complexity

- Renyi Complexity (RC), MPR Complexity, Mean Information Gain (MIG) Permutation entropy (PE)
- reference processes: e.g. correlated noise, fBM (fractional Brownian motion)

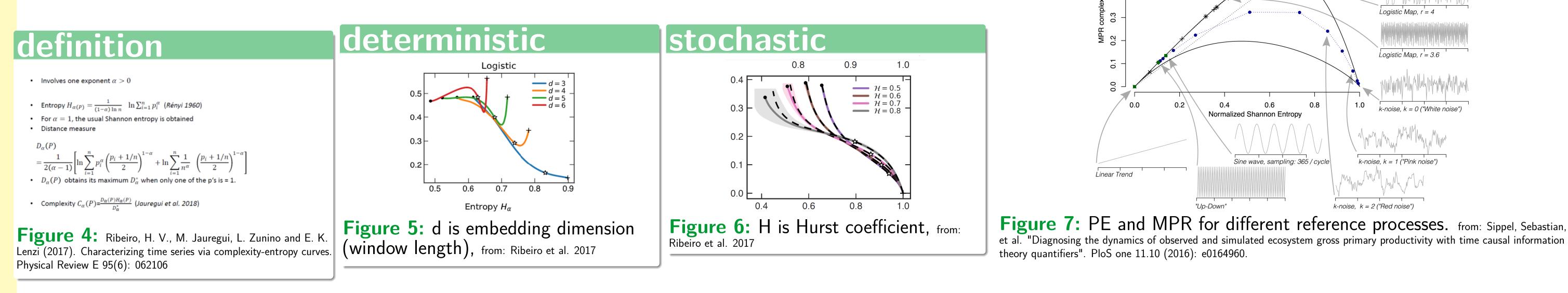


Figure 8: Renyi complexity and information for measured and modelled data of input and output variables

Conclusions

established monitoring resolution (daily) close to maximum complexity for runoff input data have highest information content (randomness, entropy)

Conclusions

- model approaches in hydrology should take the growth strategies of trees into account
- information in hydrology is in the observer, but trees are in the catchment, information may thus become physical

¹Ecological Modelling, University of Bayreuth, Dr.-Hans-Frisch-Str. 1–3, 95448 Bayreuth, Germany ²Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway

www.bayceer.de