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Motivation 
• Surrogate models (𝒮) are used to approximate a full-complexity

model‘s (simulator‘s) outputs (y), at a fraction of the time.

𝑦 ≡ ො𝑦 = 𝒮(𝜔, 𝜃)

• Subsurface systems are highly heterogeneous, and can include

large number of processes: high input dimension problem

• Geostatistical inputs: each grid cell corresponds to a model input

(𝜔)

• High input dimension problems are a challenge for surrogate

models

• Needs more training points → Computational problems 

Input dimension reduction method: 

Karhunen-Loéve decomposition (KLD)
Random field generation method + PCA approach

𝑍 𝑥 = Ε 𝑍(𝑥) +

𝑖=1

𝑴

λ𝑖 ∙ 𝜑𝑖 𝑥 ∙ ξ𝑖 𝑤𝑖𝑡ℎ 𝑴 ≤ 𝑁𝑐𝑒𝑙𝑙𝑠

What happens when 𝑴 < 𝑵𝒄𝒆𝒍𝒍𝒔 represents a small percentage 

of input variance? 

(Current) research questions
• What input dimension reduction (IDR) method should we use for

geostatistically-dependent input parameters?

• How do they behave with active learning methods, to reduce the

number of training points needed?

• Can/should we consider an IDR error to account for the reduced

amount of information being sent to the surrogate?

• We want our surrogate prediction variance to account for the

missing information and make sure the true (simulator) data is within

the confidence intervals of the prediction.

Outlook
• With KLD: test for different truncation values (description lengths): How small is too small to train a surrogate?

• Test different IDR methods along with active learning methods

• Variational auto-encoders

• Pilot points

• Surrogate evaluation criteria

• How to fairly implement Bayesian criteria to compare models

• Include output+variance (output distribution) in evaluation criteria

• Application to independent input parameter sets: radioactive nuclide transport problem
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• 𝑴 < 𝑁𝑐𝑒𝑙𝑙𝑠 = number of input

parameters for surrogate

• Each “M” truncation value is

associated to a percentage

of the input variance

Input dimension reduction error
Using Gaussian process regression (GPR), can we include an IDR 

error so the prediction variance compensates for a lack of 

information? 

We want the prediction 

distribution to account for the

IDR in the variance. 

Approaches: 

𝝁∗ = 𝐾(𝑋, 𝑥∗)𝑇∙ [𝐾 𝑋, 𝑋 + 𝜎2𝐼]−𝟏𝑦

𝜎: optimizable parameter

𝜎: constant parameter, from 

simulator space 

𝑋: use input pairs, with IDR error from 

the simulator space  

Preliminary results show 

how it is enough, but 

necessary, to consider 

an optimizable error, and 

the ML-approach 

compensates for the 

error. 

Remaining questions: 

• Is this the optimal way to

consider IDR error?

e.g. 
here, 200 is still a 
high input 
dimension to send 
to a surrogate. 
M < 90%. 

Is the surrogate, trained 

on the reduced input  

reproducing the behavior 

of the simulator as 

expected/desired? 

• Forward uncertainty 

quantification 

• Posterior distributions

What are the best method to validate surrogate, considering the distribution (variance) of our prediction?
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