

Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret

- interpretability of process-based models.
- networks has shown high potential.
- physical interpretability of the process-based part.

To Bucket or not to Bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization

i and stand-alone SHM				
	Median - Correlation			
	0.83			
	0.86			
)	0.96			

Internal functioning of hybrid model

Table	2.	Proportions	of	di
differe	ent	models		

Bucket	LSTM + SHM (%)	SHM (%)
Fast flow	14	3
Interflow	59	66
Baseflow	27	31

Figure 3. Time variation of parameters for basins 10003 (left column) and 16004 (right column). It should be noted that the Y-Axis ranges of the two basins differ

- model in a consistent manner.

Results and discussion

ischarge originating from each bucket for the

Conclusions

 The regularization given by the conceptual model is not strong enough to drop the predictive capability of the hybrid model, and missing processes can be outsourced to the data-driven part.

• If a well-tested model architecture is combined with a LSTM, the deep learning model can learn to operate the process-based

