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Motivation

The British Columbia Hydrometric Service operates a streamflow monitoring network covering

approximately 106 km2. Monitoring density is sparse and unevenly distributed in space. Given the

long delay between network design decisions and goals of data collection, how might monitoring

network expansion decisions anticipate future information needs?

Figure 1. USGS 3DEP DEM is used to generate basin polygons for O(106) river confluences. The study region
expands beyond the BC border (red dashed line) to reduce edge selection effects in the optimization problem.

Coloured areas (right) correspond to complete watershed regions. There are roughly 1500 active and historical

monitoring locations in the study region based on the set of basins included in the HYSETS study [1].

The network expansion problem is approached as a maximization of total network information,

or finding a set of unmonitored locations associated with the greatest expected reduction in

surprise for other unmonitored locations. In otherwords, what locations provide the best regional

information transfer model proxies for the greatest number of unmonitored locations?

Problem Components

The network optimization problem includes data acquisition and pre-processing, model develop-

ment and validation, and subjective methodology components that are important to address.

Decision Space Characterization A set of candidate monitoring locations (CMLs) is

generated from USGS 3DEP DEM [4], along with static attributes describing terrain, soil

(GLHYMPS [2]), and land cover (NALCMS [3]), following the HYSETS dataset [1].

Simulated vs. Observed Divergence For all pairs of monitored locations meeting a minimum

data concurrency criteria, a model is developed to map basin attribute similarity to

divergence of observed and simulated daily streamflow distributions, where the simulated

streamflow is generated from a simple area ratio model.

Objective Function Development a baseline DKL is computed for each CML corresponding

to the lowest expected divergence from all monitored locations. The expected total

reduction in surprise from adding a monitoring station is then calculated for each CML as

the sum of expected decrease in expected DKL from baseline at all other CMLs.

Model Validation Cross validation is used to test the model on stations left out-of-sample.

Questions i) complexity O(n2) becomes intractable for large decision spaces, ii)

interpretation/validity of the DKL-based model, iii) time series discretization, and iv) self

similarity in basin representation (input data quality).

UsesWhile the primary application is monitoring network optimization, the database design

is flexible and extensible to support a wide array of questions. A higher-level goal is to

develop a database that shortens the feedback loop between generating and testing ideas

involving large samples and spatio-temporal comparisons.

Decision Space Characterization

Static attributes are derived for all CML basins following [1]. The geometry and attribute informa-

tion is stored in a PostGIS database for efficient spatial querying on multiple geometry types. A

minimum basin area of 1km2 is set to support subsequent research questions in stream network

accuracy & precision, and it is left to dataset users to justify a lower limit on drainage area.

Figure 2. The monitoring network can be compared to the region it represents based on attributes. For example on

Vancouver Island, the set of monitored basins over-represents unforested basins (left), reasonably represents the

range of permeability (middle), and underrepresents steep basins (right).

Simulated vs. Observed Model

The study region contains just over 1500 active and historical streamflow monitoring stations.

483 of these stations have at least 20 years of concurrent record with another station, yielding

a sample of just over 116K basin pairs, or fewer if we impose a spatial distance limit between

basin centroids. The ”distance” between each basin pair is the L1 norm Lij =
∑n

k=1 |lik − ljk|.
The divergence between observed streamflow time series distribution P and the simulated dis-

tribution Q is the Kullback-Leibler divergence DKL (P ‖ Q) =
∑

x∈χ P (x)log
(

P (x)
Q(x)

)
where the

simulated daily streamflow series is simply a function of the area ratio and the proxy observed

series: Xi
s = X

j
o

Ai
Aj
.

Figure 3. The total sample is recursively divided into as many attribute distance (Lij) bins as the data support

statistically different expected values of DKL. At left, Lij is defined only by the spatial distance between basin

centroids, while at right Lij is the L1-norm of the 17-d vector of static attributes, suggesting that static attributes

contain information about the divergence of long-term flow distribution.

The model mapping attribute space distance to expected divergence between two locations is a

piece-wise function:

f (Lij) =


E1[DKL(Pi||Qj)] if 0 ≤ Lij < b1
E2[DKL(Pi||Qj)] if b1 ≤ Lij < b2
...

En[DKL(Pi||Qj)] if bn−1 ≤ Lij ≤ bn

Method & Objective Function

The objective function for the greedy network expansion problem is a maximization of the total

reduction of expected divergence from baseline. The steps are outlined as follows:

1. Baseline divergence is first computed for each of n CMLs as the minimum expected

divergence from m monitored locations: D′
i = minm

k=1 E(Dik
KL) ∀i ∈ {1, 2, . . . , n}.

2. Setting each CML in turn as the target location, the expected divergence of all other CMLs

(j > i) from the target (i) is computed as: Di = E(Dij
KL) ∀i, j ∈ {1, 2, . . . n} : j > i.

3. The expected reduction in divergence from expanding the network to location i is
∆i = D′

i − Di where negative values are set to zero since they do not represent an

improvement over the baseline.

4. The optimal location for network expansion i∗ is one that maximizes the combined

reduction in divergence at all unmonitored locations (CMLs).

The objective function is then:

i∗ = argmaxi∈{1,2,...n}

n∑
j=1,j>i,∆ij>0

∆ij

The probabilistic model used to estimate expected divergence does not produce a unique solu-

tion, but yields grades, or classes describing the quality of a candidate monitoring location for

providing information about other unmonitored locations. This result provides important flexibil-

ity for network expansion decisions.

Figure 4. Vancouver Island is shown as an example of mapping the expected reduction in divergence (surprise) in

space to inform network expansion decisions.
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