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Non-parametric estimation in Information Theory

Most approaches typically involve an initial step of density estimation be-

fore computing the desired quantities from information theory. Density es-

timation remains a challenge specially in higher dimensions. k -NN based

methods skip this initial step.
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Figure 1: a) Density of the Gamma-Exponential distribution with ✓ = 3 b) Same as a)

with an approximating Gamma-Exponential distribution with ✓ = 4 in red.
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Figure 2: Evaluation of all estimators in the test case of the Gamma-Exponential

distribution

True entropy: 1.000 nats
Est. entropy: 1.008 nats

import sys
sys.path.append('..')

In [2]: from scipy import stats
from unite_toolbox import knn_estimators

dist = stats.norm(loc=0, scale=0.6577)
samples = dist.rvs(size=(10_000, 1))

est_h = knn_estimators.calc_knn_entropy(samples)

print(f"True entropy: {dist.entropy():.3f} nats")
print(f"Est. entropy: {est_h:.3f} nats")

Applications

Hybrid Models

LSTMs for Model Diagnostics

! Through the power of Information Theory!

We can understand how much an LSTM has to overcompensate for a

poorly specified model by measuring the entropy of the predictions for the

parameters.

Figure 3: Model diagnostics

Because H(params) is larger for Model 2 than for Model 3, in Model 2 the

LSTM is overcompensating for a worse choice of model. Model 3 is then

a better representation of Model 1.

CAMELS-GB (thanks Eduardo!)

MODEL Entropy H(X) [in nats]
LSTM + Bucket -0.428

LSTM + SHM -1.926

LSTM + SHM** -5.921

Table 1: Evaluating predicted recession constants (ki) or (kf , ki , kb)**

MODEL Entropy H(X) [in nats]
LSTM + Bucket -109.94

LSTM + SHM -92.75

LSTM + Nonsense -108.36

Table 2: Evaluating LSTM hidden states (hs)

LSTM + Bucket
=

&SFM+ Nonsense LSTM + SHM
d
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