

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Toward an Information-Theoretic Diagnostic Evaluation Framework for Hybrid Models

Manuel Álvarez Chaves, Uwe Ehret, Hoshin Gupta and Anneli Guthke

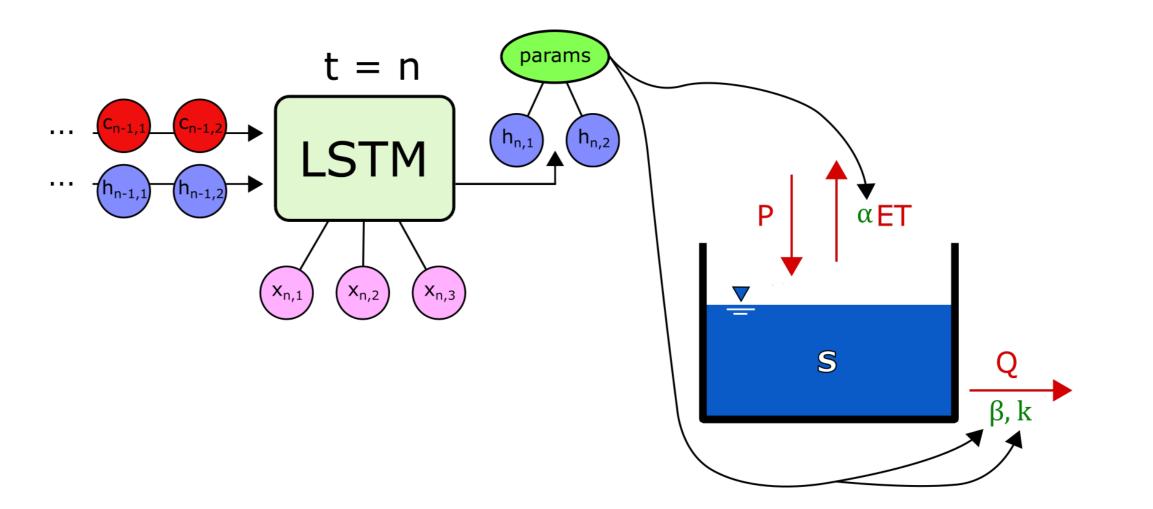
Non-parametric estimation in Information Theory

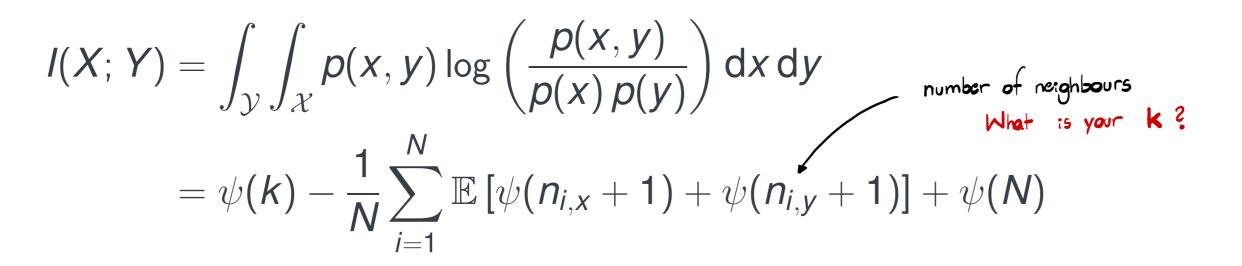
Most approaches typically involve an initial step of density estimation before computing the desired quantities from information theory. Density estimation remains a challenge specially in higher dimensions. *k*-NN based methods skip this initial step.

$$\begin{split} H(X) &= -\int_{\mathcal{X}} p(x) \log p(x) \, \mathrm{d}x \\ &= -\sum \Delta \hat{f}(x_i) \log \hat{f}(x_i) - \underbrace{\sum \hat{f}(x_i) \Delta \log \Delta}_{\text{correction factor due to binning}} \\ D_{\mathcal{KL}}(p||\,q) &= \int_{\mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)}\right) \mathrm{d}x \end{split} \qquad \qquad \text{what is your } \Delta \stackrel{?}{\stackrel{?}{\xrightarrow}} \end{split}$$

Applications

Hybrid Models





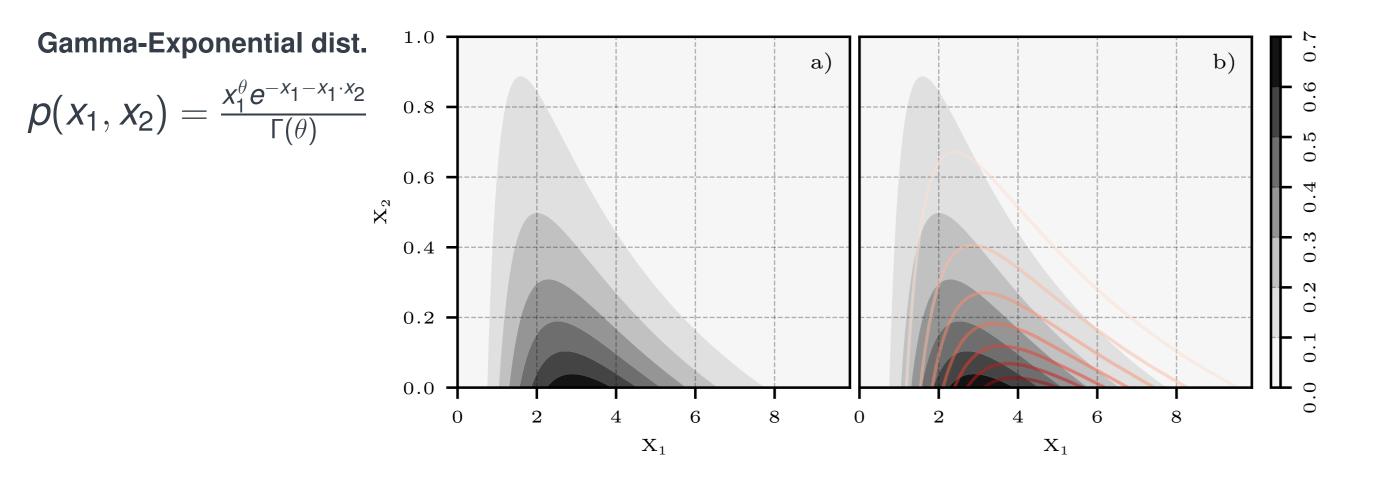
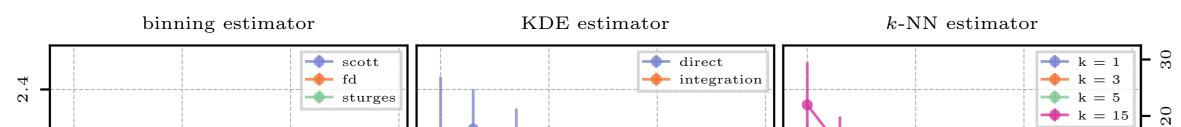


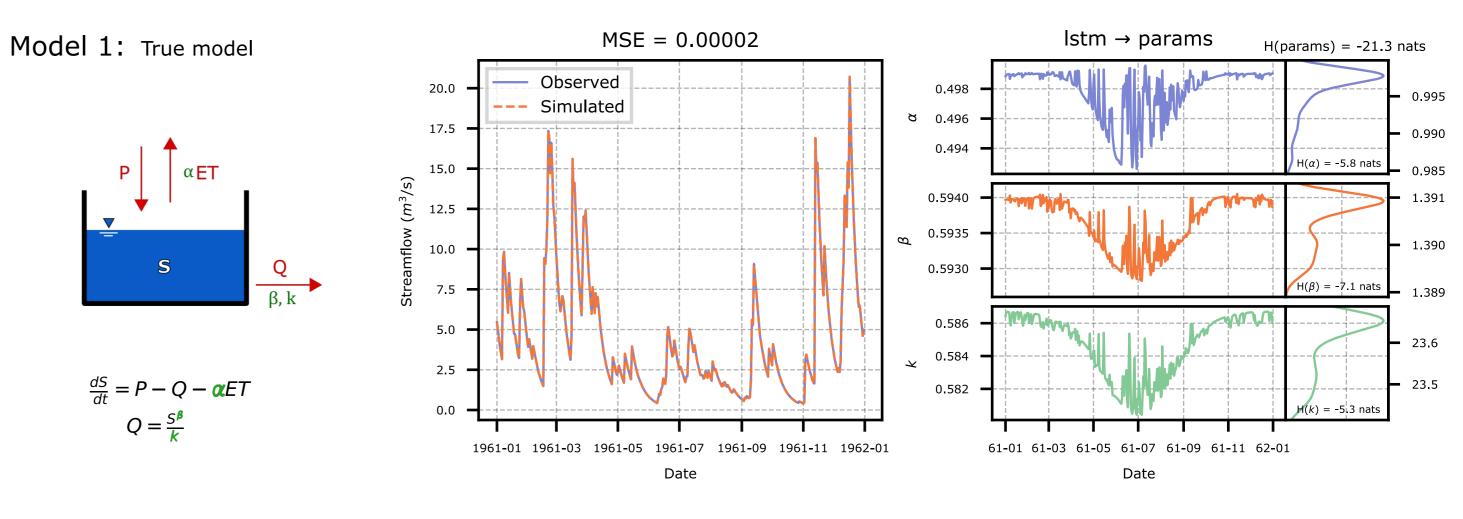
Figure 1: a) Density of the Gamma-Exponential distribution with $\theta = 3$ b) Same as a) with an approximating Gamma-Exponential distribution with $\theta = 4$ in red.

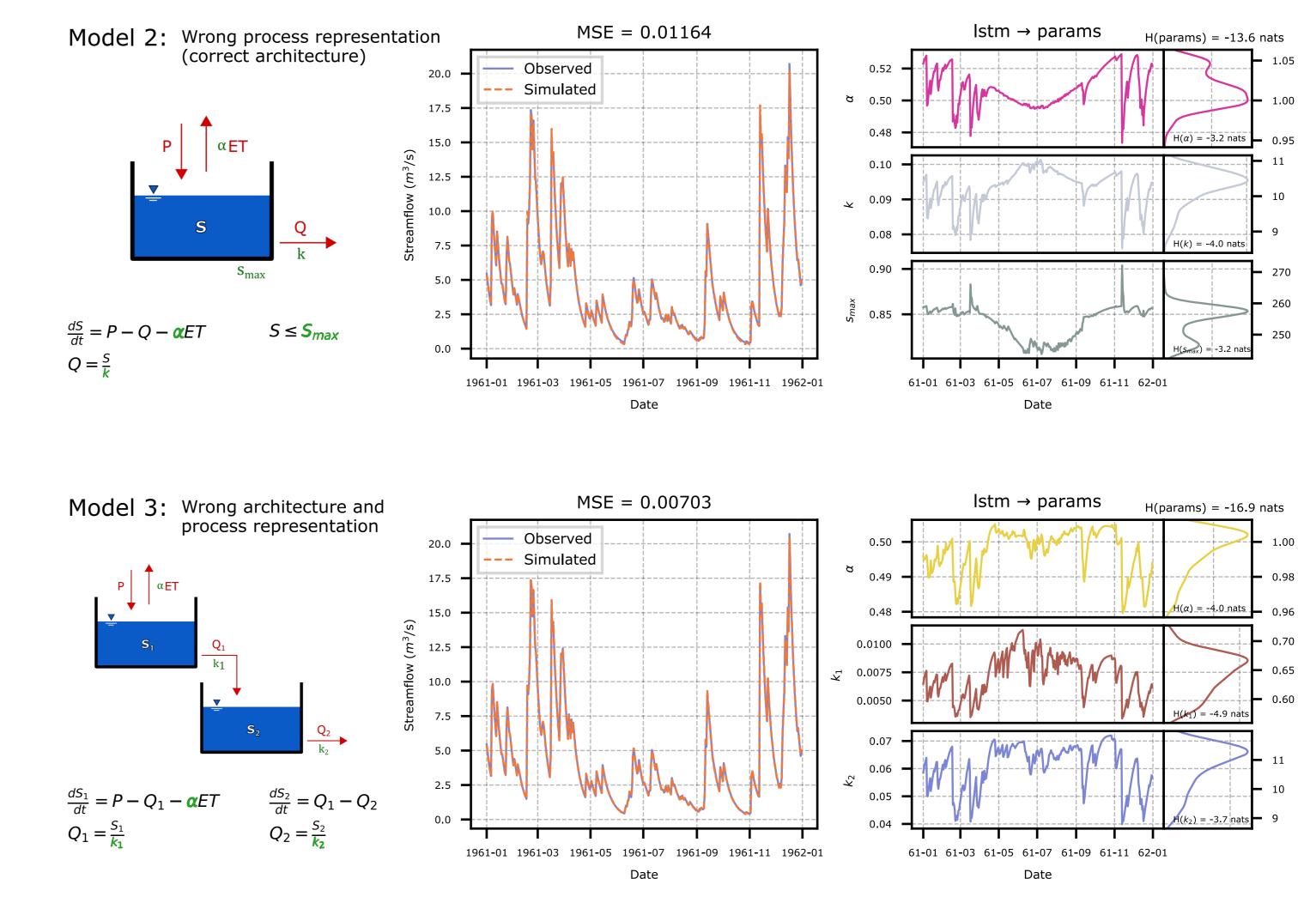


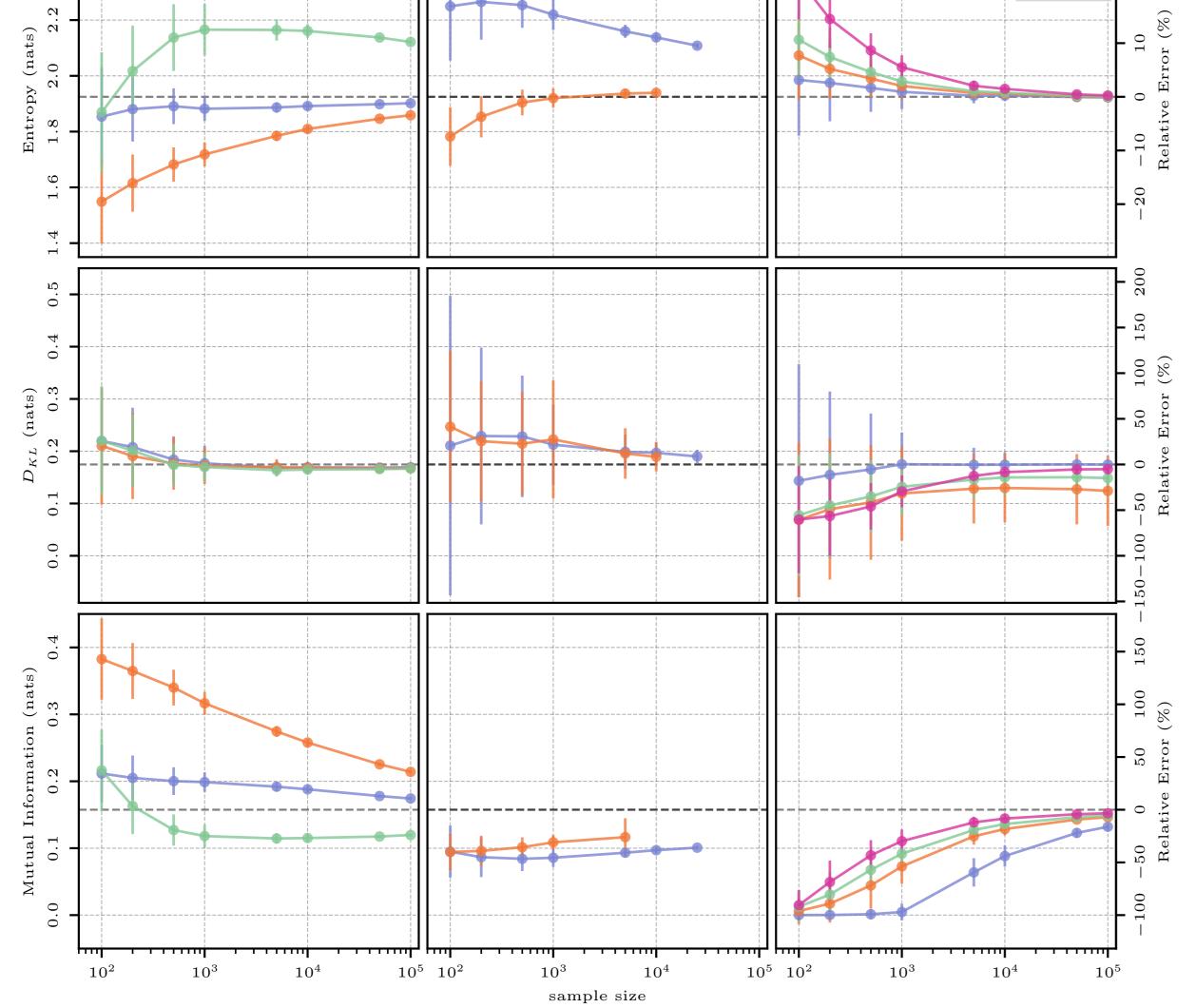
LSTMs for Model Diagnostics

 \rightarrow Through the power of **Information Theory**!

We can understand how much an LSTM has to overcompensate for a poorly specified model by measuring the entropy of the predictions for the parameters.







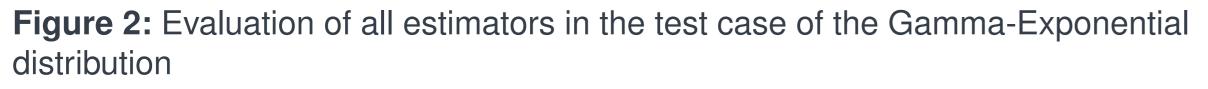


Figure 3: Model diagnostics

Because *H*(*params*) is larger for Model 2 than for Model 3, in Model 2 the LSTM is overcompensating for a worse choice of model. Model 3 is then a better representation of Model 1.

CAMELS-GB (thanks Eduardo!)

In [2]: from scipy import stats

from unite_toolbox import knn_estimators

dist = stats.norm(loc=0, scale=0.6577)
samples = dist.rvs(size=(10_000, 1))

est_h = knn_estimators.calc_knn_entropy(samples)

print(f"True entropy: {dist.entropy():.3f} nats")
print(f"Est. entropy: {est_h:.3f} nats")

True entropy: 1.000 nats Est. entropy: 1.008 nats

MODEL	Entropy H(X) [in nats]
LSTM + Bucket	-0.428
LSTM + SHM	-1.926
LSTM + SHM**	-5.921

Table 1: Evaluating predicted recession constants (k_i) or $(k_f, k_i, k_b)^{**}$

MODEL	Entropy H(X) [in nats]	
LSTM + Bucket	-109.94	LSTM + Bucket 2 (LSTM + Nonsense LSTM + SHM)
LSTM + SHM	-92.75	
LSTM + Nonsense	-108.36	-115 -110 -105 -100 -95 -90 Entropy H(X) [in nats]

Table 2: Evaluating LSTM hidden states (h_s)

www.simtech.uni-stuttgart.de

