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Abstract. Choosing the wrong objective function leads to suboptimal calibrations (information loss), unexpected biases, and

misrepresented uncertainty. So, stop assuming objectives and start testing them instead. Here, we demonstrate the “classical”

method for doing so.

1 Introduction

In machine learning or scientific computing, model performance is measured by an objective function. But why choose one

function over another? According to information theory, you should select the objective that maximizes the information in

the model, and the most likely choice is whichever objective encodes the error in the fewest bits. To evaluate that encoding,

transform the objectives into log-likelihoods `, which normalizes them, then divide ` by log2 to yield the conditional entropy

Ĥ , which is the expected number of bits required to encode the error.

A classic example is the mean squared error (MSE), which corresponds to the log-likelihood of the normal distribution. MSE

is the optimal objective when errors are normal, independent and identically distributed (iid). However, for many problems, the

true error distribution is more complex. Rather than assuming a de facto objective function like MSE, information theory can

guide that choice. Here, we demonstrate how on a toy runoff-prediction problem. The process is similar to traditional model

selection, where the model is varied while the data and objective are held fixed. In objective selection, the experiment is flipped

such that the objective is varied while the model and data are fixed. The objective yielding the highest likelihood (shortest

encoding) is typically best for that particular problem.

2 Demonstration

Using simple techniques like changing variables, we derived the log-likelihoods ` of ten objective functions (Table 1), computed

them on a dataset of streamflow predictions, converted those ` to conditional entropies Ĥ , which is in bits, then weighted and

ranked the results. The best objective encodes the error in the fewest bits.

In the experiment, the data and model were fixed, only the objective varied. Relative to ZMALE, the excess bits in the

other objective functions are noise. So, MSE measures at least 40 percent noise, and NSE at least 38 percent. In general,

noisier objectives convey less information, so they require more iterations during calibration, yield suboptimal calibrations,



Table 1. Similarity (measured as conditional entropy Ĥ), weights, and ranks of ten objective functions for the test data and model.

Ĥ , as

Objective Description bit rate Weight Rank

MSPE mean squared percent error 23.54 0.00 10

U uniformly distributed error 18.17 0.00 9

MSE mean squared error 11.62 0.01 8

NSE normalized squared error* 11.20 0.01 7

MAE mean absolute error 9.49 0.04 6

MSLE mean squared log error** 7.47 0.15 5

MARE mean absolute square root error 7.34 0.17 4

ZMSLE zero-inflated MSLE 7.18 0.19 3

MALE mean absolute log error** 7.04 0.21 2

ZMALE zero-inflated MALE 6.95 0.22 1

*Also known as Nash–Sutcliffe efficiency. **Undefined for zero or negative flows but included for

context.

and produce models that require more storage space (better model, better data compression). A well-known example of that

point is stochastic gradient descent, where noise in the objective causes slower convergence (Bottou and Bousquet, 2007).

In that case, each iteration completes faster, so the solution may be reached quicker overall, but in general, a poorly chosen

objective incurs a similar penalty but potentially without benefit.

This process of selecting an objective is more-or-less what “universal likelihoods” do automatically, which is a more ad-

vanced topic. However, those methods are ultimately limited because the best objective is not computable, so there will always

be a role for human intuition and intelligence (Rissanen, 2007) . . . at least until machines can reason as well as humans. This

demonstration is pedagogical but also useful in that simple tweaks to “classic” objective functions can have a large effect on

model error. We do not advocate for one objective over another —the choice varies from problem to problem— only that

benchmarking objectives is good practice that will yield better models.
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