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1. Introduction 
• The MDL Principle is a Theory of Inductive Inference that can be applied to general problems in 

Statistics, Machine Learning and Pattern Recognition.  
o It starts by assuming (as an axiom) that modeling by data compression (or, equivalently, 

sequential predictive log-loss minimization) is the right thing to do. 
o It states that the best explanation for a given set of data is provided by the shortest description 

of that data à obtained by choosing the model minimizing a code length (i.e., minimizing 
prediction error in a stringent worst-case-over-all-data sense). 

o MDL-type methods have a clear interpretation independent of whether any of the models under 
consideration is “true" (in the sense that it generates the data).  

• Massive deployment of MDL has been hindered by two issues (addressed herein): 
1) Applying MDL requires basic knowledge of Statistics and Information Theory.  
2) Many MDL procedures are computationally highly intensive or seem to require arbitrary 

restrictions of parameter spaces.  

• Over the last 10 years, most of these issues have been resolved.  

• This paper is relevant to the Foundations of Statistics and Machine Learning. 

Notational Preliminaries 

• We are concerned with statistical models (families of probability distributions) 𝑀 = {𝑝%:	𝜃 ∈ Θ} 
parametrized by Θ; and families of such models ,𝑀-:	𝛾 ∈ Γ0, where each 𝑀- = ,𝑝%:	𝜃 ∈ Θ-0 is used 
to model data 𝑧2 ≔ (𝑧5,… 𝑧2) with 𝑧9 ∈ 𝑍, for some outcome space 𝑍.  
o Each 𝑝% is defined on sequences of arbitrary length.  
o For i.i.d. data, we have 𝑝%(𝑧2) = ∏ 𝑝%(𝑧9)2

9<5  

• The ML estimator given the model 𝑀 = {𝑝%:	𝜃 ∈ Θ} is denoted by 𝜃=>?, and the ML estimator relative 
to model 𝑀-  is denoted by 𝜃=>?|- .  
o 𝜃A denotes more general estimators 
o 𝜃=B denotes the MDL estimator with luckiness function 𝑣. 

2. The Fundamental Concept: Universal Modeling 
• Let 𝑀-; 	𝛾 = 1,2, . . . , 𝛾HIJ	 be a finite (or countably infinite) collection of statistical models, each of 

which is associated with a single distribution �̅�-, called a Universal Distribution relative to 𝑀- .  
o The minus-log-likelihood −𝑙𝑜𝑔 P�̅�-(𝑍2)Q is called the code length of data 𝑍2 under universal 

code �̅�-.  
o We equip the model indices Γ ≔ {1,2,… , 𝛾HIJ} with a distribution 𝜋(𝛾)  
o Then, the model 𝑀-  giving the best explanation of data 𝑧2 is obtained by maximizing 
�̅�-(𝑧2)𝜋(𝛾); or equivalently by minimizing: −𝑙𝑜𝑔 P�̅�-(𝑧2)Q − 𝑙𝑜𝑔S𝜋(𝛾)T 

• Bayesian Universal Distribution: In standard Bayesian model selection, for each 𝛾, we set �̅�- =
𝑝UV
WXYZ[(𝑧2) = ∫𝑝%(𝑧2)𝑤-(𝜃)𝑑𝜃, for some prior density 𝑤-(𝜃) on the parameters in Θ-, supplied by 

the user. However, defining �̅�- this way is just one particular way to define an MDL universal 
distribution, and by no means the only one.  



• Shtarkov Distribution: The Shtarkov distribution: �̅�- = 𝑝B_>?(𝑧2) ≔
`ab
c∈d

ec(fg)B(%)

∫`ab
c∈d

ec(fg)B(%)hfg
 is perhaps 

the most fundamental universal distribution, where 𝑣: Θ → 𝑅kl is a “luckiness” function (that does not 
have to be integrable, and is not necessarily a probability density).  
o Model Complexity: In the Shtarkov distribution above, the log of the integral in the denominator 

is called the Model Complexity: 𝐶𝑂𝑀𝑃(𝑀, 𝑣) ≔ log ∫max
%∈v

𝑝%(𝑧2)𝑣(𝜃) 𝑑𝑧2 

o MDL Estimators: Given a “luckiness” function 𝑣, the MDL Estimator Based On 𝒗 defined as 𝜃=B ≔
argmax
%∈v

{𝑝%(𝑧2)𝑣(𝜃)} can be considered a penalized ML estimator (coinciding with the Bayes 

MAP estimator whenever 𝑣 is a probability density).  
o By choosing 𝑣 sufficiently smooth, 𝜃=B will usually be almost indistinguishable from the ML 

estimator 𝜃=>?  if the number of parameters is small relative to 𝑛. 
o Given (i) a set of models 𝑀 indexed by Γ, with (ii) luckiness functions 𝑣 specified on Θz for 

each 𝛾 ∈ Γ, and (iii) selecting a uniform distribution 𝜋 on Γ, the NML estimator is obtained 
by picking the model that minimizes: −log 𝑝%{|VS}gT −log 𝑣- P𝜃

=BV(fg)Q + 𝐶𝑂𝑀𝑃S𝑀-, 𝑣-T 

over 𝛾, where 𝐶𝑂𝑀𝑃S𝑀-, 𝑣-T = log ∫𝑝%{|VS}gT(𝑧
2)𝑣- P𝜃=BV(𝑧

2)Q𝑑𝑧2 .  

o This estimator incorporates a trade-off between goodness of fit as measured by 
− log 𝑝%{|VS}gT and model complexity as measured by 𝐶𝑂𝑀𝑃.  

o Although the n-fold integral inside 𝐶𝑂𝑀𝑃 looks daunting, Suzuki and Yamanishi show that 
in many cases it can be evaluated explicitly with appropriate choice of 𝑣. 

• Normalized Maximum Likelihood (NML): The NML distribution was originally defined by Shtarkov 

for special case with 𝑣 ≡ 1, as 𝑝B<��2��I2�_>? (𝑧2) ≔
`ab
c∈d

ec(fg)

∫`ab
c∈d

ec(fg)hfg
 so that 𝐶𝑂𝑀𝑃(𝑀, 𝑣) ≔

log ∫𝑝%{��S}gT(𝑧
2)𝑑𝑧2. 

o This is the version advocated by Rissanen as embodying the purest form of the MDL Principle.  
o For finite outcome spaces, 𝑣 ≡ 1 usually “works", and the integral is well defined. 
o However, the integral is ill-defined for just about every parametric model defined on unbounded 

outcome spaces (such as 𝑁; 	𝑅	𝑜𝑟	𝑅l); using nonuniform 𝑣 allows one to deal with such cases.  

• The Two-Part (Sub-)Distribution: In the two-part distribution 𝑝U��� (historically the oldest universal 
distribution), one discretizes Θ to some countable sub-set Θ̈ and equips it with a probability mass 

function 𝑤 (that sums to 1) so that: 𝑝U_>?(𝑧2) ≔
`ab
c̈∈d̈

ec̈(f
g)US%̈T

∫`ab
c̈∈d̈

ec̈(f
g)US%̈Thfg

 

o Since ∫max
%̈∈v̈

𝑝%̈(𝑧2)𝑤S�̈�T 𝑑𝑧2 ≤ ∑ 𝑤(𝜃) ∫𝑝%̈(𝑧2)𝑑𝑧2%∈v̈ = 1, we can approximate 𝑝U_>?  by 

sub-distribution 𝑝U��� ≔ max
%̈∈v̈

𝑝%̈(𝑧2)𝑤S�̈�T, which integrates to something smaller than 1.  

o We then imagine that 𝑝U��� puts its remaining mass on a special outcome, say “⋄”, which in reality 
will never occur.  

• The Prequential Plug-In Distribution: Here, one takes any reasonable estimator 𝜃A for the given model 
𝑀, and define: 𝑝%�

��Z�(𝑧2) ≔ ∏ 𝑝%�Sf���TS𝑧9|𝑧
9�5T_

�<5  where for i.i.d. models, the probability inside the 
product simplifies to 𝑝%�Sf���T(𝑧9). See Sec. 2.4.  

• The Switch Distribution: This universal distribution �̅�[�����  behaves better in a particular type of 
nested model selection. See Sec. 3.1. 

• Universal Distributions �̅�����   based on the Reverse Information Projection: These lead to improved 
error bounds and optional stopping behavior in hypothesis testing; See Sec. 3.3. 

2.1. Motivation 

• The objective is a high-level motivation that avoids direct use of data compression arguments.  



o Consider models 𝑀-  and define “the fit of the model to the data" as: 𝐹-(𝑧2) ≔ 𝑝%{��|V(𝑧
2), 

where 𝜃=>?|-  is the Maximum Likelihood estimator within 𝑀-  

o If we enlarge 𝑀-  (by adding distributions to it) then 𝐹-(𝑧2) can only increase, and for big enough 
𝑀-  we can have 𝐹-(𝑧2) = 1 on all data, and so be prone to severe overfitting.  

o Instead, a central idea of MDL is to associate each model 𝑀-  with a single corresponding 
distribution �̅�- (set 𝐹-(𝑧2): = �̅�-(𝑧2)) so that no matter the choice of �̅�- we chose, we have 
∑ 𝐹-(𝑧2)fg = 1, and so inherently prevent overfitting.  

o To decide which �̅� are best associated with a given 𝑀, we postulate that a good choice is one in 
which the Fitness Ratio 𝐹𝑅(�̅�, 𝑧2) = e̅(fg)

`ab
c∈d

ec(fg)B(%)
 (where 𝑣: Θ → 𝑅kl is a non-negative function) 

tends to be as large as possible, define as being as large as possible in the worst-case (pick the 
�̅� achieving max

e̅
min
fg

𝐹𝑅(�̅�, 𝑧2) ). 

o This maximin problem has a solution iff complexity 𝐶𝑂𝑀𝑃(𝑀, 𝑣) is finite, and the unique solution 

is given by setting �̅� = 𝒑�𝑵𝑴𝑳 ≔
`ab
c∈d

ec(fg)B(%)

∫`ab
c∈d

ec(fg)B(%)hfg
, which has a special status as the most robust 

choice of universal �̅�. 

• This choice/interpretation does not require us to assume the model 𝑀 is “true" in any sense.  

• The nicest sub-case is with 𝑣(𝜃) ≡ 1, but for most popular models with infinite 𝑍, the problem 
max
e̅
min
fg

𝐹𝑅(�̅�, 𝑧2) usually has no solution due to the complexity 𝐶𝑂𝑀𝑃(𝑀, 𝑣) being infinite.  

o For all sufficiently “regular" models (curved exponential families) this problem can be solved by 
restricting Θ to a bounded subset, but since it can be unclear where to put the boundaries it is 
more natural to introduce a nonuniform 𝑣, chosen so that the complexity 𝐶𝑂𝑀𝑃(𝑀, 𝑣) is finite. 

2.2. Asymptotic Expansions 
2.3. Unifying Model Selection and Estimation 

2.4. Log-loss Prediction and Universal Distributions 
2.5. The Luckiness Function  

3. Novel Universal Distributions  
3.1 The Switch Distribution and the AIC–BIC Dilemma  

3.2. Hybrids between NML Bayes and Prequential Plug-in  
3.3 Hypothesis Testing: Universal Distributions Based on the Reverse Information Projection 

4. Graphical Models 
• Graphical models are a framework for representing multivariate probabilistic models. 

• Choosing the right level of parsimony in graphical models is an ideal problem for MDL model selection. 

• While in Bayesian network model selection, the prevailing Bayesian paradigm embodies a particular 
form/variation of MDL, recent studies have proposed new model selection criteria that exploit the NML 
distribution. 
o One approach involves a continuous relaxation of NML-type complexities in which model 

selection problem takes on a Lasso-type L1-minimization form.  
o In other approaches, NML (or approximations thereof) are used directly for encoding parts of the 

model, including the factorized NML (fNML) score, and the quotient NML (qNML) score. 
o In all these papers, both simulated and real-world data experiments suggest that the MDL-based 

criteria are quite robust with respect to the parameters in the underlying data source.  



• Asymptotic expansion forms exist for certain model classes, revealing systematic differences between 
the complexities of different models even if they have the same number of parameters. 

5. Latent Variable and Irregular Models 
• Tractable approximations of NML-type distributions have been developed for some of the most 

important irregular (i.e., non-exponential family) models such as hierarchical latent variable models, 
and the related Gaussian mixture models. 

• For irregular models, Watanabe has proposed the Widely Applicable Information Criterion (WAIC) and 
the Widely Applicable Bayesian Information Criterion (WBIC), where the latter coincides with BIC 
when applied to regular models but is applicable even for irregular models.  
o The asymptotic form of WBIC is: 𝑊𝐵𝐼𝐶(𝑀) = − log P𝑝%¥(𝑧

2)Q + 𝜆 log(𝑛) + 𝑂eS§log(𝑛)T 
where 𝜃k is the parameter value minimizing the Kullback–Leibler divergence from the model to 
the true underlying distribution, and 𝜆 > 0 is a rational number called the real log-canonical 
threshold, which can be interpreted as the effective number of parameters (times two). 

6. Frequentist Convergence of MDL and Its Implications 

• In general, MDL procedures behave desirably (consistency and rates of convergence) under standard 
frequentist assumptions. 

• Sec. 6.1 (Frequentist Convergence of MDL Estimation) shows that the link between data compression 
and consistent estimation is very strong.  

• Sec. 6.2 (From MDL to Lasso) discusses an MDL approach (Grünwald and Mehta 2019) that can fully 
handle Supervised Learning, and also be used with large classes of loss functions including squared 
error (without normality assumption) and zero/one-loss. 

o This is achieved by associating predictors 𝑓 with densities 𝑝«(𝑥, 𝑦) ∝ expS−ℓ(𝑓(𝑥), 𝑦)T, so the 
log-loss relative to density 𝑝« on data (𝑥, 𝑦) becomes linearly related to the loss of 𝑓 on (𝑥, 𝑦). 

• Sec. 6.3 (Misspecification) examines what happens when the data comes from a distribution for which 
all considered models are wrong but some are useful (lead to good predictions).  
o It turns out that the reason most MDL approaches cannot show convergence under mis-

specification is related to the no-hypercompression property (discussed by Grunwald (2018), 
Safe probability) requiring that 𝑃k P

e¥(fg)
e(fg)

≤ 𝛼Q ≤ 𝛼, which can be achieved by replacing the 𝑝k 
inside the brackets by 𝑝³, the distribution/density in 𝑀 that is closest to 𝑃k in KL-divergence, one 
approach being to use the generalized likelihood 𝑝%

´(𝑧2) for some 1 > 𝜂 > 0;  

• Sec. 6.4 (PAC-MDL Bounds and Deep Learning) shows that MDL provides useful intuitions about Deep 
Learning (which can have many millions of parameters), which can be validated by frequentist results. 
o The PAC-Bayesian Bounds show that generalization performance of any classifier can be directly 

linked to a quantity that gets smaller (a) as soon as one needs less bits to describe the parameter 
and (b) as soon as one needs less bits to describe the data given the parameters;  

o Dziugaite and Roy (2017) and Zhou et al. (2018) show that one can predict nontrivial 
generalization using Deep Neural Nets by looking at the number of bits needed to describe the 
parameters and applying PAC-Bayesian bounds. 

o Neural Networks that generalize well tend to have parameters lying in very flat minima, and 
Hinton and van Camp (1993) and Hochreiter and Schmidhuber (1997) pointed out that describing 
weights in flat minima requires substantially lower precision, thus connecting to the MDL idea. 

7. Concluding Remarks 
• Some additional developments are:  



o Grunwald and Mehta (2019) provided a major step towards understanding the relation of MDL 
to other complexity notions (Vapnik–Chervonkis Dimension, Entropy Numbers, Rademacher 
Complexity, etc.), by showing that the NML complexity for models of the form 𝑝%(𝑧) ∝
expS−𝜂	𝐿𝑂𝑆𝑆%(𝑧)T can be precisely bounded in terms of the Rademacher complexity defined 
relative to loss.  

o Rissanen (Information and Complexity in Statistical Modeling, 1989) is developing a different (but 
compatible) direction by proposing foundations of statistics in which no underlying “true model" 
is ever assumed to exist, and expanding MDL and NML ideas in the direction of the Kolmogorov 
Structure Function 

o Since 2007, numerous MDL and MDL-like applications have appeared in the literature, 
particularly flourishing in the field of Data Mining.  
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Abstract 
• Provides an up-to-date introduction to and overview of the Minimum Description Length (MDL) 

Principle 
o MDL is a theory of inductive inference that can be applied to general problems in statistics, 

machine learning and pattern recognition.  
• While MDL was originally based on data compression ideas, this introduction can be read without any 

knowledge thereof.  
o It discusses all major developments since 2007, the last time an extensive overview was written.  
o These include: 

o new methods for model selection and averaging and hypothesis testing, as well as the  
o first completely general definition of MDL estimators.  

• Incorporating these developments, MDL can be seen as a powerful extension of both penalized 
likelihood and Bayesian approaches, in which  
o penalization functions and prior distributions are replaced by more general luckiness functions,  
o average-case methodology is replaced by a more robust worst-case approach, and in which  
o methods classically viewed as highly distinct, such as AIC versus BIC and cross-validation versus 

Bayes can, to a large extent, be viewed from a unified perspective. 

 

1. Introduction 
• The MDL Principle is a theory of inductive inference that can be applied to general problems in 

statistics, machine learning and pattern recognition.  
• Broadly speaking, it states that the best explanation for a given set of data is provided by the shortest 

description of that data.  
• In 2007, one of us published the book The Minimum Description Length Principle (Ref. 4 referred to as 

G07 from now on), giving a detailed account of most works in the MDL area that had been done until 
then.  

• During the last 10 years, several new practical MDL methods have been designed, and there have 
been exciting theoretical developments as well.  

• It therefore seemed time to present an up-to-date combined introduction and review. 

Why Read this Overview? 
• While the MDL idea has been shown to be very powerful in theory, and there have been a fair number 

of successful practical implementations, massive deployment has been hindered by two issues: 
o First, to apply MDL, one needs basic knowledge of both statistics and information theory.  

o To remedy this, we present, for the first time, the MDL Principle without resorting to 
information theory:  
• all the material can be understood without any knowledge of data compression 
• this, should make it easier for statisticians and ML researchers new to MDL.  

o Second is that many classical MDL procedures are either computationally highly intensive (for 
example, MDL variable selection as in Example 4 below) and hence less suited for our big data age, or 
they seem to require somewhat arbitrary restrictions of parameter spaces (e.g., NML with 𝑣 ≡ 1 as 
in Sec. 2).  

• Yet, over the last 10 years, there have been exciting developments — some of them very recent — 
which mostly resolve these issues.  



• Incorporating these developments, MDL can be seen as a powerful extension of both penalized 
likelihood and Bayesian approaches, in which  
o penalization functions and prior distributions are replaced by more general luckiness functions,  
o average-case methodology is replaced by a more robust worst-case approach, and in which  
o methods classically viewed as highly distinct, such as AIC versus BIC and cross-validation versus 

Bayes can, to some extent, be viewed from a unified perspective;  
• As such, this paper should also be of interest to researchers working on the foundations of statistics 

and machine learning. 

History of the Field, Recent Advances and Overview of this Paper 
• MDL was introduced in 1978 

o Jorma Rissanen (Modeling by the Shortest Data Description). The paper: 
o coined the term MDL and 
o introduced and analyzed the two-part code for parametric models.  

o The two-part code is the simplest instance of a universal code (universal probability distribution), 
which is the cornerstone concept of MDL theory.  

• MDL theory was greatly extended in the 1980s 
o Rissanen published a sequence of ground-breaking papers, several of which introduced new 

types of universal distributions.  
• It came to full blossom in the 1990s 

o With further major contributions from, primarily, Jorma Rissanen, Andrew Barron and Bin Yu,  
o culminating in their overview paper1 and the collection2 with additional chapters by other 

essential contributors such as Kenji Yamanishi.  
o The book G07 provides a more exhaustive treatment of this early work, including discussion of 

important precursors/alternatives to MDL such as MML3, “ideal", Kolmogorov complexity-based 
MDL4 and Solomonoff's theory of induction5.  

• Universal distributions are still central to MDL.  
o Sec. 2 introduces them in a concise yet self-contained way, including substantial underlying 

motivation, incorporating the extensions to and new insights into these basic building blocks that 
have been gathered over the last 10 years.  
o These include more general formulations of arguably the most fundamental universal code, 

the Normalized Maximum Likelihood (NML) Distribution, including faster ways to calculate 
it as well.  

o Sec. 3 devotes a separate section to new universal codes, with quite pleasant properties for 
practical use,  
o most notably the switch distribution (Sec. 3.1), which can be used for model selection 

combining almost the best of AIC and BIC; and the  
o Reverse Information Projection (RIPr)-universal code (Sec. 3.3) specially geared to 

hypothesis testing with composite null hypotheses, leading to several advantages over 
classical Neyman–Pearson tests.  

• Sec. 4 reviews recent developments on fast calculation of NML-type distributions for model selection 
for graphical models (Bayesian networks and the like), leading to methods which appear to be more 
robust in practice than the standard Bayesian ones. 

                                                        
1 A. Barron, J. Rissanen and B. Yu, The minimum description length principle in coding and modeling, IEEE Trans. 
Inform. Theory 44(6) (1998) 2743–2760. 
2 P. D. Grünwald, I. J. Myung and M. A. Pitt, Advances in Minimum Description Length: Theory and Applications 
(The MIT Press, 2005). 
3 C. S. Wallace and D. M. Boulton, An information measure for classification, Comput. J. 11 (1968) 185–195. 
4 P. M. B. Vitanyi and M. Li, Minimum description length induction, Bayesianism, and Kolmogorov complexity, 
IEEE Trans. Inform. Theory IT-46(2) (2000) 446–464. 
5 T. F. Sterkenburg, Universal prediction: A philosophical investigation, Ph.D. thesis, University of Groningen 
(2018). 



• Sec. 5 treats recent extensions of MDL theory and practical implementations to latent variable and 
irregular models are treated.  

• Sec. 6 reviews developments relating to consistency and convergence properties of MDL methods.  
o First, while originally MDL estimation was formulated solely in terms of discretized estimators 

(reflecting the fact that coding always requires discretization),  
o it has gradually become clear that a much larger class of estimators (including maximum 

likelihood for “simple" models, and, in some circumstances, the Lasso — see Example 4) can 
be viewed from an MDL perspective, and  

o this becomes clearest if one investigates asymptotic convergence theorems relating to 
MDL.  

o Second, it was found that MDL (and Bayes), without modification, can behave sub-optimally 
under misspecification, i.e., when all models under consideration are wrong, but some are useful 
— see Sec. 6.3.  

o Third, very recently, it was shown how some of the surprising phenomena underlying the deep 
learning revolution in machine learning can be explained from an MDL-related perspective;  
o we briefly review these developments in Sec. 6.4.  

o Finally, we note that G07 presented many explicit open problems, most of which have been 
resolved:  
o we mention throughout the text whenever a new development solved an old open 

problem, deferring some of the most technical issues to the Appendix. 

Notational preliminaries 

• We shall mainly be concerned with statistical models (families of probability distributions) of the 
form 𝑀 = {𝑝%:	𝜃 ∈ Θ} parametrized by some set Θ which is usually but not always a subset of 
Euclidean space; and families of models ,𝑀-:	𝛾 ∈ Γ0, where each 𝑀- = ,𝑝%:	𝜃 ∈ Θ-0 is a statistical 
model, used to model the data 𝑧2 ≔ (𝑧5,… 𝑧2) with each 𝑧9 ∈ 𝑍, for some outcome space 𝑍.  
o Each 𝑝% represents a probability density function (pdf) or probability mass function, defined on 

sequences of arbitrary length.  
o With slight abuse of notation, we also denote the corresponding probability distribution by 
𝑝% (rather than the more common 𝑃%).  

o In the simple case that the data are i.i.d. according to each 𝑝% under consideration, we have 
𝑝%(𝑧2) = ∏ 𝑝%(𝑧9)2

9<5  

• We denote the maximum likelihood (ML) estimator given the model 𝑀 = {𝑝%:	𝜃 ∈ Θ} by 𝜃=>?, 
whenever it exists and is unique; the ML estimator relative to model 𝑀-  is denoted by 𝜃=>?|-.  
o We shall, purely for simplicity, generally assume its existence and uniqueness, although nearly 

all results can be generalized to the case where it does not.  
o We use 𝜃A to denote more general estimators, and 𝜃=B to denote what we call the MDL estimator 

with luckiness function 𝑣, see (5). 

2. The Fundamental Concept: Universal Modeling 
• MDL is best explained by starting with one of its prime applications, model comparison  

o we will generalize to prediction and estimation later, in Secs. 2.3 and 2.4.  

• Assume then that we are given a finite or countably infinite collection of statistical models 
𝑀5;	𝑀�;	. ..	; each consisting of a set of probability distributions.  
o The fundamental idea of MDL is to associate each 𝑀-  with a single distribution �̅�-, often called 

a universal distribution relative to 𝑀- .  
• We call the minus-log-likelihood −𝑙𝑜𝑔 P�̅�-(𝑍2)Q the code length of data 𝑍2 under universal code �̅�-.  

o This terminology, and how MDL is related to coding (lossless compression of data), is briefly 
reviewed in Secs. 2.3 and 2.4;  
o but a crucial observation at this point is that the main MDL ideas can be understood 

abstractly, without resorting to the code length interpretation.  



• We also equip the model indices Γ ≔ {1,2,… , 𝛾HIJ} (where we allow |Γ| = 𝛾HIJ = ∞) with a 
distribution, say 𝜋;  
o if the number of models to be compared is small (e.g., bounded independently of 𝑛 or at most a 

small polynomial in 𝑛), we can take 𝜋 to be uniform distribution 
o for large (exponential in 𝑛) and infinite Γ, see Sec. 2.3 and Example 4.  

• We then take, as our best explanation of the given data 𝑧2, the model 𝑀-  minimizing: 

−𝑙𝑜𝑔S𝜋(𝛾)T − 𝑙𝑜𝑔 P�̅�-(𝑧2)Q       (1) 

o or, equivalently, we maximize 𝜋(𝛾)�̅�-(𝑧2);  
o when 𝜋 is uniform this simply amounts to picking the 𝛾 maximizing �̅�-(𝑧2).  
o Eq. (1) will later be generalized to 𝜋 that are not distributions but rather more general “luckiness 

functions" — see Sec. 2.3. 

(1) The Bayesian Universal Distribution 
• The reader may recognize this as being formally equivalent to the standard Bayesian way of model 

selection, the Bayes factor method as long as the 𝛾 are defined as Bayesian marginal distributions, 
i.e., for each 𝛾, we set �̅�- = 𝑝UV

WXYZ[, where 

𝑝UV
WXYZ[(𝑧2) = ∫𝑝%(𝑧2)𝑤-(𝜃)𝑑𝜃      (2) 

o for some prior probability density 𝑤- on the parameters in Θ-, which has to be supplied by the 
user. 

o When 𝑤- is clear from the context, we shall write 𝑝-WXYZ[ rather than 𝑝UV
WXYZ[.  

• Using Bayesian marginal distributions �̅�WXYZ[ is indeed one possible way to instantiate MDL model 
selection, but it is not the only way:  
o MDL can also be based on other distributions such as �̅�_>? = 𝑝B_>?  (depending on a function 𝑣), 
�̅���Z� = 𝑝%�	

��Z�  (depending on an estimator 𝜃A) and others;  
o in general, we add a bar to such distributions if the “parameter" 𝑤, 𝑣	𝑜𝑟	𝜃A  is clear from the 

context.  
• Before we continue with these other instantiations of �̅�- we proceed with an example. 

Example 1 (Bernoulli).  
• Let 𝑀 = {𝑝%:	𝜃 ∈ [0,1]} represent the Bernoulli model, extended to 𝑛 outcomes by independence.  
• We then have for each 𝑧2 ∈ {0,1}2 that 𝑝%(𝑧2) = 𝜃2�(1 − 𝜃)2¥  where 𝑛5 = ∑ 𝑧92

9<5  and 𝑛k = 𝑛 −
𝑛5. 

• Most standard prior distributions one encounters in the literature are beta priors, for which 𝑤(𝜃) ∝
(𝑧2) = 𝜃»(1 − 𝜃)¼, so that 𝑝UWXYZ[(𝑧2) ∝ ∫𝜃2�l»(1 − 𝜃)2¥l¼𝑑𝜃. 

• Note that 𝑝UWXYZ[(𝑧2) is not itself an element of the Bernoulli model.  
• One could use 𝑝UWXYZ[ to compare the Bernoulli model, via (1), to, for example, a first-order Markov 

model, with Bayesian marginal likelihoods defined analogously.  
• We shall say a lot more about the choice of prior below. 

Example 2 (Gauss and General Improper Priors).  

• A second example is the Gaussian location family 𝑀½X¾[[  with fixed variance (say 1), in which 𝑍 =
𝑅 and 𝑝%(𝑧2) ∝ exp∑ (𝑧9 − 𝜃)� 2⁄2

9<5 . 
• A standard prior for such a model is the uniform prior, 𝑤(𝜃) = 1, which is improper (it does not 

integrate, hence does not define a probability distribution).  
• Improper priors cannot be directly used in (2), and hence they cannot be directly used for model 

comparison as in (1) either.  
• Still, we can use them in an indirect manner, as long as we are guaranteed that, for all 𝑀-  under 

consideration, after some initial number of 𝑚 observations, the Bayesian posterior 𝑤-(𝜃|𝑧H) is 
proper.  



• We can then replace 𝑝UV
WXYZ[(𝑧2) in (2) by 𝑝UV

WXYZ[(𝑧Hl5,… , 𝑧2|𝑧H) ≔
∫𝑝%(𝑧Hl5,… , 𝑧2|𝑧2)𝑤-(𝜃|𝑧H)𝑑𝜃. 

• We extend all these conditional universal distributions to distributions on 𝑍2 by defining 
𝑝UV
WXYZ[(𝑧5,… , 𝑧2) ≔ 𝑝UV

WXYZ[(𝑧Hl5,… , 𝑧2|𝑧H)𝑝k(𝑧H) for some distribution 𝑝k on 𝑍H  that is taken 
to be the same for all models 𝑀-  under consideration. 

• We can now use (1) again for model selection based on 𝑝UV
WXYZ[(𝑧5,… , 𝑧2), where we note that 

the choice of 𝑝k plays no role in the minimization, which is equivalent to minimizing 
−𝑙𝑜𝑔S𝜋(𝛾)T − 𝑙𝑜𝑔 P𝑝UV

WXYZ[(𝑧Hl5,… , 𝑧2|𝑧H)Q. 
• Now comes the crux of the story, which makes MDL, in the end, quite different from Bayes:  

o defining the �̅�- as in (2) is just one particular way to define an MDL universal distribution — but 
it is by no means the only one.  

o There are several other ways, and some of them are sometimes preferable to the Bayesian choice.  
• Here we list the most important ones. 

(2) NML or Shtarkov6 Distribution, and MDL Estimators 
• This is perhaps the most fundamental universal distribution, leading also to the definition of an MDL 

estimator.  
• In its general form, the NML distribution and “MDL estimators" depend on a function 𝑣: Θ → 𝑅kl.  
• The definition is then given by: 

𝑝B_>?(𝑧2) ≔
`ab
c∈d

ec(fg)B(%)

∫`ab
c∈d

ec(fg)B(%)hfg
(𝑖𝑓	𝑣	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

=
`ab
c∈d

ec(fg)

∫`ab
c∈d

ec(fg)hfg
  (3) 

which is defined whenever the normalizing integral is finite.  

• The logarithm of this integral is called the Model Complexity and is thus given by: 

𝐶𝑂𝑀𝑃(𝑀, 𝑣) ≔ log ∫max
%∈v

𝑝%(𝑧2)𝑣(𝜃) 𝑑𝑧2
(𝑖𝑓	𝑣	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

=
log ∫𝑝%{��S}gT(𝑧

2)𝑑𝑧2   (4) 

o Here the integral is replaced by a sum for discrete data, and max is replaced by sup if necessary.  
• This means that any function 𝑣: Θ → 𝑅kl such that (4) is finite is allowed;  

o we call any such 𝑣 a luckiness function, a terminology we explain later.  
• Note that 𝑣 is not necessarily a probability density — it does not have to be integrable.  
• For any luckiness function 𝑣, we define the MDL Estimator Based On 𝑣 as  

𝜃=B ≔ argmax
%∈v

{𝑝%(𝑧2)𝑣(𝜃)} = argmin
%∈v

{− log 𝑝% − [−log 𝑣(𝜃)]}   (5) 

• The 𝑣 −𝑀𝐷𝐿 estimator is a penalized ML estimator, which coincides with the Bayes MAP estimator 
based on prior 𝑣 whenever 𝑣 is a probability density.  

• Although this has only become clear gradually over the last 10 years, estimators of form (5) are the 
prime way of using MDL for estimation;  
o there is, however, a second, “improper" way for estimating distributions within MDL though, see 

Sec.2.4.  
• In practice, we will choose 𝑣 that are sufficiently smooth so that, if the number of parameters is small 

relative to 𝑛, 𝜃=B will usually be almost indistinguishable from the ML estimator 𝜃=>?.  
• 𝐶𝑂𝑀𝑃 indeed measures something one could call a “complexity" — this is easiest to see if 𝑣 = 1, for 

then, if 𝑀 contains just a single distribution, we must have 𝐶𝑂𝑀𝑃(𝑀, 𝑣) = 0, and the more 
distributions we add to 𝑀, the larger 𝐶𝑂𝑀𝑃(𝑀, 𝑣) gets — this is explored further in Sec. 2.2. 

• Now suppose we have a collection of models 𝑀 indexed by finite Γ and we have specified luckiness 
functions 𝑣 on Θz for each 𝛾 ∈ Γ, and we pick a uniform distribution 𝜋 on Γ.  

• As can be seen from the above, if we base our model choice on NML, we pick the model minimizing 

− log 𝑝%{|VS}gT −log 𝑣- P𝜃
=BV(fg)Q + 𝐶𝑂𝑀𝑃S𝑀-, 𝑣-T  (6) 

                                                        
6 Yu. M. Shtarkov, Universal sequential coding of single messages, Probl. Inf. Transm. 23(3) (1987) 3–17. 



o over 𝛾, where 𝐶𝑂𝑀𝑃S𝑀-, 𝑣-T is given by:  

𝐶𝑂𝑀𝑃S𝑀-, 𝑣-T = log ∫max
%∈vV

P𝑝%(𝑧2)𝑣-(𝜃)Q𝑑𝑧2 = log ∫𝑝%{|VS}gT(𝑧
2)𝑣- P𝜃=BV(𝑧

2)Q𝑑𝑧2 (7) 

• Thus, by (6), MDL incorporates a trade-off between goodness of fit and model complexity as measured 
by 𝐶𝑂𝑀𝑃.  

• Although the n-fold integral inside 𝐶𝑂𝑀𝑃 looks daunting, Suzuki and Yamanishi7 show that in many 
cases (e.g., normal, Weibull–Laplace models) it can be evaluated explicitly with appropriate choice of 
𝑣. 

• Originally, the NML distribution was defined by Shtarkov for the special case with 𝑣 ≡ 1, leading to 
the rightmost definition in (3), and hence the term NML (in the modern version, perhaps “normalized 
penalized ML" would be more apt).  

• This is also the version that Rissanen8 advocated as embodying the purest form of the MDL Principle.  
• However, the integral in (3) is ill-defined for just about every parametric model defined on un- 

bounded outcome spaces (such as 𝑁; 	𝑅	𝑜𝑟	𝑅l þ ), including the simple normal location family.  
• Using nonuniform 𝑣 allows one to deal with such cases in a principled manner after all, see Sec. 2.5.  
• For finite outcome spaces though, 𝑣 ≡ 1 usually “works", and (3) is well defined, as we illustrate for 

the Bernoulli model (see Sec. 4 for more examples). 

Example 3 (Continuation of Example 1). 

• For the Bernoulli model, 𝜃=HÇ(𝑧2) = 𝑛5/𝑛 and 𝐶𝑂𝑀𝑃(𝑀, 𝑣) as in (7) with 𝑣 ≡ 1 can be rewritten as 

log∑ S2�2 T P
2�
2
Q
2�
P2¥
2
Q
2¥2

2�<k 	 , which, as we shall see in Sec. 2.2, is within a constant of P5
�
Q log 𝑛.  

• As reviewed in that sub-section, the resulting 𝑝B_>?  is asymptotically (essentially) indistinguishable 
from 𝑝UÉWXYZ[ where the latter is equipped with Jeffreys' prior, defined as 𝑤𝐽(𝜃) ∝ §𝐼(𝜃) =

𝜃�
�
Ë(1 − 𝜃)�

�
Ë , with 𝐼(𝜃) being the Fisher information at 𝜃. 

(3) The two-part (sub-)distribution 

• Here one first discretizes Θ to some countable sub-set Θ̈ which one equips with a probability mass 
function 𝑤;  
o in contrast to the 𝑣 above, this function must sum to 1.  

• One then considers: 

𝑝U_>?(𝑧2) ≔
`ab
c̈∈d̈

ec̈(f
g)US%̈T

∫`ab
c̈∈d̈

ec̈(f
g)US%̈Thfg

       (8) 

o `which is just a special case of (3).  
• But since ∫max

%̈∈v̈
𝑝%̈(𝑧2)𝑤S�̈�T𝑑𝑧2 ≤ ∫∑ 𝑝%̈(𝑧2)𝑤S�̈�T𝑑𝑧2%̈∈v̈ = ∑ 𝑤(𝜃) ∫𝑝%̈(𝑧2)𝑑𝑧2%∈v̈ = 1, we 

can approximate 𝑝U_>?  by the sub-distribution 𝑝U��� ≔ max
%̈∈v̈

𝑝%̈(𝑧2)𝑤S�̈�T. 

• This “distribution” adds or integrates to something smaller than 1.  
• This can be incorporated into the general story by imagining that 𝑝U��� puts its remaining mass on a 

special outcome, say “⋄”, which in reality will never occur (while sub-distributions are thus “allowed", 
measures that add up to something larger than 1 have no place in MDL).  

• The two-part distribution 𝑝U��� is historically the oldest universal distribution.  
• The fact that it can be considered a special case of NML has only become fully clear very recently9;  

o in that same paper, an even more general formulation of (3) is given that has all Bayesian, two-
part and NML distributions as special cases.  

• Despite its age, the two-part code is still important in practice, as we explain in Sec. 2.3. 

                                                        
7 A. Suzuki and K. Yamanishi, Exact calculation of normalized maximum likelihood code length using Fourier 
analysis, arXiv:1801.03705 [math.ST]. 
8 J. Rissanen, Fisher information and stochastic complexity, IEEE Trans. Inform. Theory 42(1) (1996) 40–47. 
9 P.Grunwald and N.Mehta, A tight excess risk bound via a unified PAC-Bayesian-Rademacher-Shtarkov-MDL 
complexity, in Proc. Thirtieth Conf. Algorithmic Learning Theory (ALT 2019) (2019), arXiv:1720.07732 [stat.ME]. 



(4) The Prequential Plug-In Distribution10,11  

• Here, one first takes any reasonable estimator 𝜃A for the given model 𝑀.  
• One then defines: 

𝑝%�
��Z�(𝑧2) ≔ ∏ 𝑝%�Sf���TS𝑧9|𝑧

9�5T_
�<5      (10) 

o where for i.i.d. models, the probability inside the product simplifies to 𝑝%�Sf���T(𝑧9).  
• For the normal location family, one could simply use the ML estimator: 𝜃A(𝑧H) = 𝜃A>?(𝑧H) =
∑ 𝑧Ì 𝑚⁄H
É<5 .  

• With discrete data though, the ML estimator should be avoided, since then one of the factors in (10) 
could easily become 0, making the product 0, so that the model for which 𝑝%�

��Z�  is defined can never 
“win" the model selection contest even if most other factors in the product (10) are close to 1.  

• Instead, one can use a slightly “smoothed" ML estimate (a natural choice for 𝜃A is to take an MDL 
estimator for some 𝑣 as in (5), but this is not required).  

• For example, in the Bernoulli model, one might take 𝜃A(𝑧H) = S𝑚5 + (1 2⁄ )T/(𝑚+ 1), where 𝑚5 =
∑ 𝑧ÌH
É<5 .  

• With this particular choice, 𝑝%�
��Z�  turns out to coincide exactly with 𝑝UÉWXYZ[ with Jeffreys' prior 𝑤𝐽. 

o Such a precise correspondence between �̅���Z�  and �̅�WXYZ[ is a special property of the Bernoulli 
and multinomial models though;  

o with other models, the two distributions can usually be made to behave similarly, but not 
identically.  

• The rationale for using �̅���Z�   is described in Sec. 2.4.  
• In Sec. 3.2.1 we will say a bit more about hybrids between prequential plug-in and Bayes (the flattened 

leader distribution) and between prequential and NML (sequential NML). 
• Except for the just mentioned “hybrids", these first four universal distributions were all brought into 

MDL theory by Rissanen;  
o they are extensively treated by G07, in which one chapter is devoted to each, and to which we 

refer for details.  
• The following two are much more recent. 

(5) The Switch Distribution �̅�[�����  (Ref12)  

• In a particular type of nested model selection, this universal distribution behaves arguably better than 
the other ones.  
o It will be treated in detail in Sec. 3.1. 

(6) Universal Distributions �̅�����   based on the Reverse Information Projection 

• These universal distributions13 lead to improved error bounds and optional stopping behavior in 
hypothesis testing and allow one to forge a connection with group-invariant Bayes factor methods; 
see Sec. 3.3. 

 
 
 
 

                                                        
10 J. Rissanen, Universal coding, information, prediction and estimation, IEEE Trans. Inform. Theory 30 (1984) 
629–636. 
11 A. P. Dawid, Present position and potential developments: Some personal views, statistical theory, the 
prequential approach, J. R. Stat. Soc. A 147(2) (1984) 278–292. 
12 T. van Erven, P.D. Grunwald and S. de Rooij, Catching up faster in Bayesian model selection and model 
averaging, in Advances in Neural Information Processing Systems, Vol. 20 (Curran Associates, Inc. 2008), pp. 
417–424. 
13 P. Grunwald, R. de Heide and W. Koolen, Safe testing, arXiv: 1906. 07801 [math.ST]. 



2.1. Motivation 
• We first give a very high-level motivation that avoids direct use of data compression arguments.  

o For readers interested in data compression, Sec. 2.3 does make a high-level connection, but for 
more extensive material we refer to G07.  

o We do, in Sec. 2.4, give a more detailed motivation in predictive terms, and, in Sec. 6, we shall 
review mathematical results indicating that MDL methods are typically consistent and enjoy fast 
rates of convergence, providing an additional motivation in itself. 

• Consider then models 𝑀- , where for simplicity we assume discrete data, and let 𝜃=>?|-  be the 
maximum likelihood estimator within 𝑀- .  

• Define “the fit of the model to the data" in the standard way as the likelihood assigned to the data by 
the best fitting distribution within the model: 𝐹-(𝑧2) ≔ 𝑝%{��|V(fg)

(𝑧2).  
o Now if we enlarge the model 𝑀- , i.e., by adding several distributions to it, 𝐹-(𝑧2) can only 

increase; and if we make 𝑀-  big enough such that for each 𝑧2, it contains a distribution 𝑝 with 
𝑝(𝑧2) = 1, we can even have 𝐹-(𝑧2) = 1 on all data.  

o If we simply picked the 𝛾 maximizing 𝐹-(𝑧2), we would be prone to severe overfitting.  
o For example, if models are nested, then, except for very special data, we would 

automatically pick the largest one. 

• As we have seen, a central MDL idea is to instead associate each model 𝑀-  with a single corresponding 
distribution �̅�-, i.e., we set 𝐹-(𝑧2): = �̅�-(𝑧2). 
o Then the total probability mass on all potential outcomes 𝑧2 cannot be larger than 1, which 

makes it impossible to assign overly high fit 𝐹-(𝑧2) to overly many data sequences:  
o no matter what distribution �̅�- we chose, we must now have ∑ 𝐹-(𝑧2)fg = 1, so a good fit 

on some 𝑧2 necessarily implies a worse fit on others, and we will not select a model simply 
because it accidentally contained some distribution that fitted our data very well 

o thus, measuring fit by a distribution �̅�- instead of 𝐹- inherently prevents overfitting.  

• This argument to measure fit relative to a model with a single �̅�- is similar to Bayesian Occam's Razor 
arguments14 used to motivate the Bayes factor;  
o the crucial difference is that we do not restrict ourselves to �̅�- of the form 𝑝UV

WXYZ[(𝑧2) =
∫𝑝%(𝑧2)𝑤-(𝜃)𝑑𝜃;  

o inspecting the “Bayesian" Occam argument, there is, indeed, nothing in there which forces us to 
use distributions of Bayesian form. 

• The next step is thus to decide which �̅� are best associated with a given 𝑀.  
o To this end, we define the Fitness Ratio for data 𝑧2 as  

𝐹𝑅(�̅�, 𝑧2) = e̅(fg)
`ab
c∈d

ec(fg)B(%)
       (11) 

o where 𝑣: Θ → 𝑅kl is a non-negative function. 

• To get a feeling for (11), it is best to first focus on the case with 𝑣 ≡ 1; it then reduces to 
𝐹𝑅(�̅�, 𝑧2) = e̅(fg)

`ab
c∈d

ec(fg)
        (12) 

o We next postulate that a good choice for �̅� relative to the given model is one in which 𝐹𝑅(�̅�, 𝑧2) 
tends to be as large as possible.  
o The rationale is that, overfitting having already been taken care of by picking some �̅�  that 

is a probability measure (integrates to 1), it makes sense to take a �̅�  whose fit to data (as 
measured in terms of likelihood) is proportional to the fit to data of the best-fitting 
distribution in 𝑀 à whenever some distribution in the model 𝑀 fits the data 𝑧2 well, the 
likelihood �̅�(𝑧2) should be high as well.  

                                                        
14 C. E. Rasmussen and Z. Ghahramani, Occam's razor, in Advances in Neural Information Proces- sing Systems, 
Vol. 13 (The MIT Press, 2000), pp. 294–300. 



o One way to make “𝐹𝑅 tends to be large" precise is by requiring it to be as large as possible in the 
worst-case, i.e., we want to pick the �̅� achieving: 

max
e̅
min
fg

𝐹𝑅(�̅�, 𝑧2)        (13) 

o where the maximum is over all probability distributions over samples of length 𝑛.  
o It turns out that this maximin problem has a solution if and only if the complexity 𝐶𝑂𝑀𝑃(𝑀, 𝑣) 

(4) is finite; and if it is fine, the unique solution is given by setting �̅� = �̅�_>?, with �̅�_>?  given by 
(3).  
o The NML distribution thus has a special status as the most robust choice of universal �̅�  

• Even though �̅� is itself a probability distribution, it meaningfully assesses fit in the 
worst-case over all possible distributions, and its interpretation does not require one 
to assume that the model 𝑀 is “true" in any sense.  

o The nicest sub-case is the one with 𝑣(𝜃) ≡ 1, since then all distributions within the model 𝑀 are 
treated on exactly the same footing; no data or distribution is intrinsically preferred over any 
other one. 

• Unfortunately, for most popular models with infinite 𝑍, when taking 𝑣(𝜃) ≡ 1, (13) usually has no 
solution since the integral ∫𝑝%{��S}gT(𝑧

2)𝑑𝑧2 diverges for such models, making the complexity 

𝐶𝑂𝑀𝑃(𝑀, 𝑣) (4) infinite.  
o For all sufficiently “regular" models (curved exponential families, see below), this problem can 

invariably be solved by restricting Θ to a bounded subset of its own interior — one can show that 
the complexity (4) is finite with 𝑣 ≡ 1, and thus (13) has a solution given by (3) if 𝜃=HÇ  is restricted 
to a suitably bounded set.  

o Yet, restricting Θ to a bounded subset of itself is not satisfactory, since it is unclear where exactly 
to put the boundaries.  

o It is more natural to introduce a nonuniform 𝑣, which can invariably be chosen so that the 
complexity 𝐶𝑂𝑀𝑃(𝑀, 𝑣) (4) is finite and thus (13) has a solution — more on choosing 𝑣 at the 
end of Sec. 2.4. 

• A few remarks concerning this high-level motivation of MDL procedures are in order. 
(1) It is clear that, by requiring 𝐹𝑅 to add to 1, we will be less prone to overfitting than by setting it 

simply to 𝑝%{��S}gT(𝑧
2);  

o Whether the requirement to add (at most) to 1, making 𝐹𝑅 essentially a probability density 
function, is a clever way to avoid overfitting (leading to good results in practice) is not clear yet.  

o For this, we need additional arguments, which we very briefly review.  
o First, the sum-to-1 requirement is the only choice for which the procedure can be interpreted as 

selecting the model which minimizes code length of the data (the original interpretation of MDL) 
o Second, it is the only choice which has a predictive interpretation, which we review in Sec. 2.4 

below 
o Third, it is the only choice under which time-tested Bayesian methods fit into the picture  
o Fourth, with this choice we get desirable frequentist statistical properties such as consistency 

and convergence rates, see Sec. 6. 

(2) The motivation above only applies to the NML universal distributions.  How about the other five 
types?  
o Originally, in the pure MDL approach mainly due to Rissanen, the NML was viewed as the optimal 

choice per se; other �̅� should be used only for pragmatic reasons, such as them being easier to 
calculate.  
o One would then design them so as to be as close as possible to the NML distributions in 

terms of the fitness ratio they achieve.  
o In the following sub-section, we show that all six of them satisfy the same MDL/BIC asymptotics, 

meaning that their fitness ratio is never smaller than a constant factor of the NML one, either 
again in the worst-case over all 𝑧2 or in some weaker expectation sense. 
o Thus, they are all “kind of ok" in a rather weak sense, and in practice one would simply 

revert to the one that is closest to NML and still usable in practice;  



• with the Bayesian �̅�WXYZ[, as we shall see, one can even get arbitrarily close to NML as 
𝑛 gets larger.  

o This classical story notwithstanding, it has become more and more apparent that, in 
practice, one sometimes wants or needs properties of model selection methods that are 
not guaranteed by NML — such as near-optimal predictions of future data or strong 
frequentist Type-I error guarantees.  
• This translates itself into universal codes �̅�[�����  "p switch and �̅�����  that, for some 

special sequences, achieve much higher fitness ratio than �̅�_>?, while for all 
sequences having only very slightly smaller fitness ratio.  

o This more recent and pragmatic way of MDL is briefly reviewed in Secs. 3.1 and 3.3. 

o This raises the question how we should define a universal distribution: what choices for �̅�- are 
still “universal" (and define an MDL method) and what choices are not?  
o Informally, every distribution �̅�- that for no 𝑧2 ∈ 𝑍2 has �̅�-(𝑧2) ≪ �̅�-_>?(𝑧2) is “universal" 

relative to 𝑀- .  
o For parametric models such as exponential families, the ≪ is partially formalized by 

requiring that at the very least, they should satisfy (14) below (G07 is much more precise 
on this). 

(3) Third, we have not yet said how one should choose the “luckiness function" 𝑣 — and one needs to 
make a choice to apply MDL in practice.  

o The interpretation of 𝑣 is closely tied to the predictive interpretation of MDL, and hence we 
postpone this issue to the end of Sec. 2.4. 

(4) Fourth, the motivation so far is incomplete — we still need to explain why and how to incorporate 
the distribution 𝜋 on model index Γ.  

o This is done in Sec. 2.3 below. 

2.2. Asymptotic Expansions 

2.3. Unifying Model Selection and Estimation 
2.4. Log-loss Prediction and Universal Distributions 

2.5. The Luckiness Function  

3. Novel Universal Distributions  
3.1 The Switch Distribution and the AIC–BIC Dilemma  
3.2. Hybrids between NML Bayes and Prequential Plug-in  

3.3 Hypothesis Testing: Universal Distributions Based on the Reverse Information Projection 

4. Graphical Models 
• Graphical models are a framework for representing multivariate probabilistic models in a way that 

encompasses a wide range of well-known model families, such as Markov chains, Markov random  
fields and Bayesian networks;  
o for a comprehensive overview, see Ref. 4615.  

• A key property of a graphical model is parsimony,  
o which can mean, for instance, a low-order Markov chain or more generally a sparse dependency 

graph that encodes conditional independence assumptions.  

• Choosing the right level of parsimony in graphical models is an ideal problem for MDL model selection. 

• In Bayesian network model selection, the prevailing paradigm is, unsurprisingly, the Bayesian one.  
o Especially the works of Geiger and Heckerman 47 and Heckerman et al. 48 have been extremely 

influential.  
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o The main workhorse of this approach is the so-called Bayesian Dirichlet (BD) family of scores 
which is applicable in the discrete case where the variables being modeled are categorical.  
o Given a data sample, such scores assign a goodness value to each model structure.  
o Exhaustive search for the highest scoring structure is possible when the problem instance 

(characterized by the number of random variables) is of limited size, but heuristic search 
techniques such as variants of local search or “hill-climbing" can be used for larger problem. 

o Different forms of the BD score imply different Dirichlet priors (different hyper-parameters) for 
the local multinomial distributions that comprise the joint distribution.  
o For example, in the commonly used BDeu score, the priors are determined by a single 

hyper-parameter, 𝛼.  
• For a variable 𝑋9  with 𝑟 distinct values and parents 𝑃I�  that can take 𝑞 possible 

combinations of values (configurations), the BDeu prior is 𝐷𝑖𝑟(𝛼 𝑟𝑞⁄ ,… , 𝛼 𝑟𝑞⁄ ).  
• One of the main motivations for adopting this prior is that it leads to likelihood 

equivalence, i.e., it assigns equal scores to all network structures that encode the same 
conditional independence assumptions.  

o In light of the fact that Bayesian model selection embodies a particular form/variation of MDL, 
these methods fit, at least to some extent, in the MDL framework as well.  

• However, there also exist more “pure", non-Bayesian MDL methods for model selection in Bayesian 
networks; we mention Refs. 49 and 50 as early representative examples.  
o These early methods are almost invariably based on the two-part coding framework.  

• More recently, several studies have proposed new model selection criteria that exploit the NML 
distribution.  
o One approach is a continuous relaxation of NML-type complexities proposed by Miyaguchi et 

al.16 in which the model selection problem takes on a tractable Lasso-type L1-minimization form 
(see also Example 4).  

o In other approaches, NML [or usually, approximations (but not relaxations) thereof] are used 
directly for encoding parts of the model; we now describe these latter approaches in a bit more 
detail. 

4.1. Factorized NML and variants 

• Silander et al. 52 propose the factorized NML (fNML) score for Bayesian network model selection 
which was designed to be decomposable, meaning that it can be expressed as a sum that includes a 
term for each variable in the network.  
o This property facilitates efficient search among the super-exponential number of possible model 

structures; see, e.g., Ref. 48.  
o The fNML score factors the joint likelihood not only in terms of the variables but also in terms of 

distinct configurations of the parent configurations.  
o Each factor in the product is given by a multinomial NML probability, for which a linear-time 

algorithm by Kontkanen and Myllymäki 53 can be used. 

• A similar idea where a Bayesian network model selection criterion is constructed by piecing together 
multiple NML models under the multinomial model was proposed recently by Silander et al. 54  
o In the proposed quotient NML (qNML) score, the local scores corresponding to each variable in 

the network are defined as log-quotients of the form log
_>?ÐÑ��PÒ�∪�Ô�Q

_>?ÐÑ��P�Ô�Q
, where 𝑁𝑀𝐿Õ¾??  refers 

to an NML distribution defined by using a fully connected network to model the variable 𝑋9  and 
its parents 𝑃I�  in the numerator and the same thing for the parent set 𝑃I�  in the denominator.  
o Technically, this amounts to collapsing the configurations of the variables into distinct 

values of a single categorical variable.  

                                                        
16 K. Miyaguchi, S. Matsushima and K. Yamanishi, Sparse graphical modeling via stochastic complexity, in Proc. 
2017 SIAM Int. Conf. Data Mining (SDM2017) (2017), pp. 723–731. 



o Even though the resulting categorical variable may have a huge number of possible values, 
the linear time algorithm 53 or efficient approximations (see the next sub-section) can be 
used to implement the computations.  

o A notable property of the 𝑞𝑁𝑀𝐿 score is that, unlike the 𝑓𝑁𝑀𝐿 score, it is likelihood- equivalent 
(see above). 

• Eggeling et al.17 apply similar ideas to a different model class, namely parsimonious Markov chains.  
o There too, the likelihood is decomposed into factors depending on the configurations of other 

variables, and each part in the partitioning is modeled independently using the multinomial NML 
formula.  

o The authors demonstrate that the 𝑓𝑁𝑀𝐿-style criterion they propose leads to parsimonious 
models with good predictive accuracy for a wide range of different scenarios, whereas the 
corresponding Bayesian scores are sensitive to the choice of the prior hyper-parameters, which 
is important in the application where parsimonious Markov chains are used to model DNA 
binding sites. 

• In all these papers, both simulated and real-world data experiments suggest that the MDL-based 
criteria are quite robust with respect to the parameters in the underlying data source.  
o In particular, the commonly used Bayesian methods (such as the BDeu criterion) that are being 

used as benchmarks are much more sensitive and fail when the assumed prior is a poor match 
to the data-generating model, whereas the MDL methods are invariably very close to the 
Bayesian methods with the prior adapted to fit the data.  

o This poses interesting questions concerning the proper choice of priors in the Bayesian paradigm. 

• In fact, the prevalence of the Bayesian paradigm and the commonly used BD scores is challenged by 
two recent observations:  
o First, Silander et al. 52 show that the Dirichlet prior with hyper-parameters (1 2⁄ ,… , 1 2⁄ ), which 

is the invariant Jeffereys' prior for the multinomial model, but not likelihood-equivalent when 
used in the BD score, is very close to the fNML model and consequently, enjoys better robustness 
properties than the BDeu score which is the likelihood-equivalent BD score variant. 

o  Second, Suzuki 57 shows that the BDeu criterion is irregular, i.e., prone to extreme overfitting 
behavior in situations where a deterministic relationship between one variable and a set of other 
variables holds in the data sample.  

o The MDL scores discussed above are regular in this respect and their robustness properties seem 
to be better than those of the BD scores, see Ref. 54. 

4.2. Asymptotic expansions for graphical models 
• Asymptotic results concerning MDL-based criteria in graphical models are interesting for several rea- 

sons.  
1) For one, they lead to efficient scores that can be evaluated for thousands of different model 

structures.  
2) Second, asymptotic expansions can lead to insights about the relative complexity of different 

model structures. 

• Various asymptotic forms exist for the point-wise and the expected regret depending on the model 
class in question.  
o For convenience we repeat the classical expansion of the NML (as well as the Bayesian marginal 

likelihood with Jeffreys' prior) regret/model complexity that applies for regular model classes 
𝑀 = {𝑝%:	𝜃 ∈ Θ} for which 𝐶𝑂𝑀𝑃(𝑀, 𝑣) is finite with uniform 𝑣 (see Sec. 2.2 above) 

𝐶𝑂𝑀𝑃(𝑀, 𝑣) = Ö
�
log 2

�×
+ ∫ §|𝐼(𝜃)|𝑑𝜃v + 𝑂(1)     (29) 

o where 𝑘 is the dimension of the model, |𝐼(𝜃)| is the determinant of the Fisher information matrix 
at parameter 𝜃, the integral is over the parameter space, and the remainder term 𝑂(1) vanishes 
as the sample size tends to infinity. 

                                                        
17 R. Eggeling, T. Roos, P. Myllymäki and I. Grosse, Robust learning of inhomogeneous PMMs, in Proc. 
Seventeenth Int. Conf. Artificial Intelligence and Statistics (2014), pp. 229–237. 



o For discrete data scenarios, by far the most interesting case is the multinomial model (extension 
of the Bernoulli distribution to an i.i.d. sequence of r-valued categorical random variables) since 
it is a building block of a number of MDL-criteria such as fNML and qNML (see above).  

o There are many asymptotic expansions for the NML regret under the multinomial model. 
Probably the most useful is the one proposed by Szpankowski and Weinberger 58: 
o xxx 
o where n is the sample size, 𝛼 = Ù

2
 and xxx 

o This simple formula is remarkably accurate over a wide range of finite values of n and r (see 
Ref. 54).  

o Note that the leading term is proportional to n (rather than log(n) as usual) because the 
formula is derived for the regime 𝑟 = Θ(𝑛) where the alphabet size grows proportionally 
to the sample size.  
• If r grows slower than n or not at all, the leading term tends to the classical form (29), 

where the leading term is Ö
�
𝑙𝑜𝑔(𝑛).  

• In practice, the approximation (30) is applicable for a wide range of 𝑟/𝑛 ratios. 
o Roos, 59 and Zou and Roos 60 studied the second term in the expansion (29), namely the Fisher 

information integral, under Markov chains and Bayesian networks using Monte Carlo sampling 
techniques.  
o This approach reveals systematic differences between the complexities of models even if 

they have the same number of parameters. 

5. Latent Variable and Irregular Models 
• Although thus far we have highlighted exponential family and regression applications, NML and other 

universal distributions can of course be used for model selection and estimation in complete generality 
— and many practical applications are in fact based on highly irregular models.  
o Often, “classical" two-part distributions (based on discretized models) are used, since NML 

distributions often pose computational difficulties.  
o However, Yamanishi and collaborators have managed to come up with tractable approximations 

of NML-type distributions for some of the most important irregular (i.e., non- exponential family) 
models such as hierarchical latent variable models 61, and the related Gaussian mixture models 
62,63. 

• Suzuki et al. 64 provide an NML approach to nonnegative matrix factorization.  
o Two-part codes (and corresponding MDL estimators) for mixture families that come close to 

achieving the minimax regret were considered very recently by Miyamoto et al. 65 

• When it comes to asymptotic approximations for code lengths/log-likelihoods based on NML and 
other universal distributions — all approximations so far (in Sec. 2.2) were derived essentially 
assuming that the model under consideration is an exponential family.  
o Extensions to curved exponential families and generalized linear models are relatively 

straightforward (see G07 for details).  

• For more irregular models, Watanabe has proposed the Widely Applicable Information Criterion 
(WAIC) and the Widely Applicable Bayesian Information Criterion (WBIC), see Refs. 6618 and 6719,  
o where the latter can be viewed as an asymptotic expansion of the log-likelihood based on a 

Bayesian universal distribution.  
o It coincides with BIC when applied to regular models but is applicable even for singular 

(irregular) models.  
o The asymptotic form of WBIC is: 𝑊𝐵𝐼𝐶(𝑀) = − log P𝑝%¥(𝑧

2)Q + 𝜆 log(𝑛) + 𝑂eS§log(𝑛)T 

                                                        
18 S. Watanabe, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in 
singular learning theory, J. Mach. Learn. Res. 11 (2010) 3571–3594. 
19 67. S. Watanabe, A widely applicable Bayesian information criterion, J. Mach. Learn. Res. 14 (2013) 867–897. 



o where 𝜃k is the parameter value minimizing the Kullback–Leibler divergence from the 
model to the true underlying distribution, and 𝜆 > 0 is a rational number called the real 
log-canonical threshold (see Ref. 67), which can be interpreted as the effective number of 
parameters (times two). 

6. Frequentist Convergence of MDL and Its Implications 

• Rissanen first formulated the MDL Principle as — indeed — a Principle:  
o One can simply start by assuming, as an axiom, that modeling by data compression (or, 

equivalently, sequential predictive log-loss minimization) is the right thing to do.  

• One can also take a more conventional, frequentist approach, and check whether MDL procedures 
behave desirably under standard frequentist assumptions.  
o We now review the results that show that, in general, they do — thus providing a frequentist 

justification of MDL ideas:  
o with some interesting caveats,  

• MDL model selection is typically consistent (the smallest model containing the true 
distribution is eventually chosen, with probability one) and  

• MDL prediction and estimation achieves good rates of convergence (the Hellinger 
distance between the estimated and the true density goes to zero, with high 
probability, quite fast).  

o In this section we review the most important convergence results.  
o Sec. 6.1 shows that the link between data compression and consistent estimation is in fact 

very strong;  
o Sec. 6.4 shows that, by taking MDL as a principle, one can get useful intuitions about deep 

questions concerning deep learning; and the intuitions can then, as a second step, be once 
again validated by frequentist results. 

• Thus, let us assume, as is standard in frequentist statistics, that data are drawn from a distribution 
in one of the models under 𝑀-  under consideration.  
o We consider consistency and convergence properties of the main MDL procedures in their main 

applications: Model Selection, Prediction and Estimation. 
o Model selection:  

o For model selection between a finite number of models, all universal codes mentioned here 
are consistent in wide generality;  
• for example, this has been explicitly proven if the data are i.i.d. and all models on the 

list are exponential families, but results for more complex models with dependent data 
have also been known for a long time; see G07 for an overview of results.  

o If the collection of models is countably infinite, then results based on associating each 𝑀-  
with �̅�WXYZ[ have also been known for a long time;  
• such results typically hold for “almost all" (suitable defined) distributions in all 𝑀- ; 

again, see G07 for a discussion of the (nontrivial) “almost all" requirement.  
• These countable-Γ consistency results were extended to the switch distribution by van 

Erven et al. 29 
o Prediction and “Improper" Estimation: 

o As to sequential prediction (Sec. 2.4), the rate of convergence results are very easy to show 
(see Chap. 15 of G07), but these typically only demonstrate that the cumulative-log-loss 
prediction error of sequentially predicting with a universal distribution �̅� behaves well as 
𝑛	increases.  
• Thus, since the sum of prediction errors is small, say (for parametric models) of order 
𝑙𝑜𝑔(𝑛), for most 𝑡 the individual cumulative prediction/estimation error at the tth 
sample point must be of order 1/𝑡, since ∑ 5

�
− 𝑙𝑜𝑔(𝑡)2

�<5 = 𝑂(1).  
o Still, it remains an open question how to prove for individual 𝑡 what exactly the expected 

prediction error is at that specific 𝑛.  



• Since one can view each prediction as an “improper" estimate (end of Sec. 2.4), the 
convergence rates of the resulting estimators, which estimate the underlying 
distribution based on a sample of size 𝑡 as �̅�(𝑍�l5|𝑧�), usually also behave well in a 
cumulative sense, but again it is very hard to say anything about individual 𝑡.  

o The asymptotic expansions (15) and (16) imply that, for fixed parametric models 𝑀- , 
�̅�WXYZ[ and �̅�_>?  achieve optimal cumulative prediction and estimation errors.  
• If, however, they are defined relative to a full model class 𝑀 = ⋃ 𝑀--∈z  consisting of 

at least two nested models, then they may fail to achieve optimal rates by a 𝑙𝑜𝑔(𝑛) 
factor.  

• van Erven et al. 29 show that sequential prediction/estimation based on the switch 
distribution achieves the minimax-optimal rates even in such cases.  

• van der Pas and Grunwald 30 show that, if only two models are compared, then the 
optimal obtainable rate for individual 𝑛 for any consistent procedure is achieved as 
well. 

6.1. Frequentist convergence of MDL estimation 

• Very strong results exist concerning the convergence of MDL estimation based on an MDL estimator 
𝜃=B as given by (5): 𝜃=B ≔ argmax

%∈v
{𝑝%(𝑧2)𝑣(𝜃)} = argmin

%∈v
{− log 𝑝% − [−log𝑣(𝜃)]} 

• A first, classical result was already stated by the ground-breaking work 68, establishing that 
consistency and good convergence rates can be obtained for the special case of a two- …… 

• …………… 

 

6.2. From MDL to Lasso  
…….. 

Supervised Machine Learning 

• Importantly, all the works mentioned here except Ref. 13 cannot show convergence under mis- 
specification — for example, when applied to the Lasso, they would require an assumption of normal 
noise (corresponding to the squared error used in the Lasso fit, which is equivalent to the log-loss 
under a normal distribution for the noise).  
o In practice though, the Lasso (with the squared error) is often used in cases in which one cannot 

assume normally distributed errors.  
o Reference 13 contains results that can still be used in such cases [although the formula for 
𝐶𝑂𝑀𝑃 (𝑀, 𝑣) changes], based on ideas which we sketch in the following sub-section. 

• More generally, one of the major areas within Machine Learning is Supervised Learning in which one 
assumes that data (𝑋5; 𝑌5);	(𝑋�; 𝑌�);	 . .. are i.i.d. ~𝑃k,with 𝑋9 ∈ 𝒳 and 𝑌9 ∈ 𝒴,and one aims to use the 
data to learn a predictor function 𝑓:𝒳 → 𝒴ß that has small expected loss or risk, defined as 
𝐸(Ò;Y)~�[ℓ(𝑓(𝑋), 𝑌)], where ℓ:	𝒴 × 𝒴ß → 𝑅 is some loss function of interest and 𝑓 is a member of 
some “predictor model" 𝐹.  

• For example, the statistical notion of “regression with random design" corresponds, in Machine 
Learning, to a Supervised Learning Problem with 𝒴 = 𝒴ß = 𝑅 and ℓ(𝑦ß, 𝑦) = (𝑦ß − 𝑦)�.  
o Early MDL convergence results do not cover this “supervised" situation: they are not equipped to 

handle either random design or loss functions beyond the log-loss.  
o Some of the more recent works mentioned above are able to handle random design but not 

general loss functions (for example, for Lasso-type applications they require the noise to be 
normally distributed).  

o Reference 13 seems to be the first that can fully handle supervised learning scenarios:  
o the convergence results can be used with random design,  
o they can also be used with large classes of loss functions including squared error (without 

normality assumption) and zero/one-loss.  
o This is achieved by associating predictors 𝑓 with densities 𝑝«(𝑥, 𝑦) ∝ expS−ℓ(𝑓(𝑥), 𝑦)T, so that 

the log-loss relative to density 𝑝« on data (𝑥, 𝑦) becomes linearly related to the loss of 𝑓 on 



(𝑥, 𝑦); the analysis then proceeds via analyzing convergence of MDL for the densities 𝑝«: 𝑓 ∈ 𝐹 
as a mis-specified probability model. 

6.3. Misspecification 
• As beautifully explained by Rissanen20, one of the main original motivations for MDL-type methods is 

that they have a clear interpretation independent of whether any of the models under consideration 
is “true" in the sense that it generates the data:  
o one chooses a model minimizing a code length (i.e., a prediction error on unseen data), which is 

meaningful and presumably might give something useful irrespective of whether the model is 
true (Rissanen even argues that the whole notion of a “true model" is misguided).  

o This model-free paradigm also leads one to define the NML distribution as minimizing prediction 
error in a stringent worst-case-over-all data sense [Eq. (13)] rather than a stochastic sense. 

• Nevertheless, it is of interest to see what happens if one samples data from a distribution for which 
all models under consideration are wrong, but some are quite useful in the sense that they lead to 
pretty good predictions.  
o Doing this leads to rather unpleasant surprises: as first noted by Grunwald and Langford 77, MDL 

(and Bayesian inference) can become inconsistent:  
o one can give examples of ,𝑀-: 𝛾 ∈ Γ0 with countably infinite Γ and a “true" data generating 

distribution 𝑃k such that, when data are sampled i.i.d. from 𝑃k, MDL will tend to select a 
sub-optimal model for all large 𝑛 à  
• while all sub-models 𝑀-  are wrong, one of them, 𝑀-â  is optimal in several intuitive 

respects (closest in KL divergence to 𝑃k, leading to best predictions under a number of 
loss functions), yet it will not be selected for large 𝑛.  

o While the models considered by Grunwald and Langford 77 were quite artificial, Grunwald and 
van Ommen 78 showed that the same can happen in a more natural linear regression setting;  
o moreover, they also showed that even if Γ is finite, although then eventually MDL will select 

the best sub-model, for even relatively large 𝑛 it may select arbitrarily bad sub-models.  
o De Heide 79 shows that the problem also occurs with MDL and Bayesian regression with 

some real-world datasets. 

• It turns out that the root of the problem is related to the no-hypercompression property (27)21.  
o If the collection of models ,𝑀-: 𝛾 ∈ Γ0 contains the density 𝑝k of the “true" distribution 𝑃k, then 

any distribution 𝑝 ∈ ⋃ 𝑀--∈z  will satisfy no-hypercompression relative to the true 𝑝k: 

𝑃k P
e¥(fg)
e(fg)

≤ 𝛼Q ≤ 𝛼. 
o This property underlies the proof of all MDL consistency and rate-of-convergence results, 

such as those by Barron and Cover 68, Zhang 69, and Grunwald and Mehta 13.  
o However, if the model class 𝑀 does not contain the true 𝑝k, then, in order to prove consistency, 

one needs 𝑃k P
e¥(fg)
e(fg)

≤ 𝛼Q ≤ 𝛼 to hold with the 𝑃k outside the brackets unchanged, but the 𝑝k 
inside the brackets replaced by 𝑝³, the distribution/density in 𝑀 that is closest to 𝑃k in KL-
divergence (why it should be KL is explained at length by Grunwald and van Ommen 78).  
o Unfortunately, though, (33) does not necessarily hold with the 𝑝k replaced by 𝑝³.  
o If it does not, MDL (and Bayesian methods, whose consistency relies on similar properties) 

may become inconsistent.  

• Grunwald and van Ommen 78, based on earlier ideas in Refs. 80 and 81, propose a solution that works 
for Bayesian universal distributions:  
o it replaces the likelihoods 𝑝%(𝑧2) for every 𝑝 = 𝑝% with 𝑝 ∈ 𝑀 by the generalized likeli- hood 
𝑝%
´(𝑧2) for some 𝜂 > 0;  
o usually 𝜂 < 1 — this 𝜂 has the same mathematical function as the 𝜂 appearing in (32).  

                                                        
20 J. Rissanen, Complexity of models, in Complexity, Entropy and the Physics of Information, ed. W. H. Zurek 
(Addison-Wesley, 1991), pp. 117–125. 
21 P. Grunwald, Safe probability, J. Stat. Plan. Inference 195 (2018) 47–63. 



o It turns out that with such a modi c̄ation, if 𝜂 is chosen small enough, a version of the no-
hypercompression inequality (33) holds after all.  
o References 78 and 81 also provide a method for learning 𝜂 from the data, the “Safe 

Bayesian" algorithm (note that 𝜂 cannot be learned from the data by standard MDL or 
Bayesian methods).  

o The recent work of Grunwald and Mehta 13 suggests that the modification of likelihoods by 
exponentiating with 𝜂 should work for general MDL methods as well. 

6.4. PAC-MDL Bounds and Deep Learning 
• One of the great mysteries of modern deep learning methods in machine learning is the following22:  

o Deep Learning is based on Neural Network models which can have many millions of parameters.  
o Although typically run on very large training samples 𝑧2, 𝑛 is usually still so small that the 

data can be fit perfectly, with zero error on the training set.  
o Still, the trained models often perform very well on future test sets of data.  

• How is this possible?  
o At first sight this contradicts the tenet, shared by MDL and just about any other method of 

statistics, that good generalization requires the models to be “small" or “simple" relative to 
the sample size  
• [small 𝐶𝑂𝑀𝑃(𝑀) in MDL analyses, small VC dimension or small entropy numbers in 

statistical learning analyses].  
o One of several explanations (which presumably all form a piece of the puzzle) is that the 

local minimum of the error function found by the training method is often very broad — if 
one moves around in parameter space near the minimum, the fit hardly changes.  

o Hochreiter and Schmidhuber 83 already observed that describing weights in sharp minima 
requires high precision in order to not incur non-trivial excess error on the data, whereas flat 
minima can be described with substantially lower precision, thus forging a connection to the 
MDL idea;  
o in fact, related ideas already appear in Ref. 8423.  

o In these papers, the MDL Principle is used in a manner that is less direct than what was done 
thus far in this paper:  
o we (and, usually, Barron and Rissanen) directly hunt for the shortest description of the data. 

• In contrast, the aforementioned authors simply note that, no matter how a vector of parameters for 
a model was obtained, if, with the obtained vector of parameters, the data can be compressed 
substantially, for example by coding first the parameters and then the data with the help of the 
parameters, then, if we believe the MDL Principle, with these parameters the model (network) should 
generalize well to future data.  

• In modern practice, Neural Networks are often trained with Stochastic Gradient Descent (SGD), and it 
has been empirically found that networks that generalize well do tend to have parameters lying in 
very flat minima. 

• While this use of the MDL Principle seems less precise than what we reviewed earlier in this paper, it 
can once again be given a frequentist justification, and this justification is mathematically precise after 
all:  
o the so-called PAC-Bayesian generalization bounds24 show that the generalization performance 

of any classifier can be directly linked to a quantity that gets smaller  

o (a) as soon as one needs less bits to describe the parameter and  

                                                        
22 W. Zhou, V. Veitch, M. Austern, R. Adams and P. Orbanz, Compressibility and generalization in large-scale 
deep learning, arXiv:1804.05862 [Stat.ML]. 
23 G. E. Hinton and D. van Camp, Keeping the neural networks simple by minimizing the description length of 
the weights, in Proc. Sixth Annu. Conf. Computational Learning Theory (ACM, 1993), pp. 5–13. 
24 D. McAllester, PAC-Bayesian stochastic model selection, Mach. Learn. 51(1) (2003) 5–21. 



o (b) as soon as one needs less bits to describe the data given the parameters;  
o Both the results and their proofs are very similar to the MDL convergence results by Barron and 

Cover 68, Zhang 69,70 and Grunwald and Mehta 13.  
o Although in general, the formulation is not as straightforward as a simple sum of the two 

description lengths (a) and (b), the connections between both the two-part code length and 
the Bayesian code length are quite strong, as was already noticed by Blum and Langford 86.  

o In particular, for discrete Θ, such PAC-Bayes bounds contain a term −𝑙𝑜𝑔S𝜋(𝜃)T which can 
be interpreted as the number of bits needed to encode 𝜃 using the codes based on some 
distribution 𝜋;  
• for general, uncountable Θ, this term gets replaced by a KL-divergence term that can 

still be related to a code length via a so-called “bits back argument" pioneered by 
Hinton and van Camp 84. 

•  Dziugaite and Roy 87 and Zhou et al. 82, inspired by earlier work by Langford and 
Caruana 88,  indeed show that, for some real-world datasets, one can predict nontrivial 
generalization using deep neural nets by looking at the number of bits needed to 
describe the parameters and applying PAC-Bayesian bounds. 

7. Concluding Remarks 
• We have given a self-contained introduction to MDL, incorporating and highlighting recent 

developments. 

• Of necessity, we had to make a choice as to what to cover in detail, and there are many things we 
omitted.  

• We would like to end with briefly mentioning three additional developments.  
1) First, there has always been the question about how MDL relates to other complexity notions 

such as those considered in the statistical learning theory literature 26: Vapnik–Chervonkis 
dimension, entropy numbers, Rademacher complexity and so on.  

• A major step towards understanding the relation was made by Grunwald and Mehta 
13 who show that for probability models with members of the form 𝑝%(𝑧) ∝
expS−𝜂	𝐿𝑂𝑆𝑆%(𝑧)T, where loss is an arbitrary bounded loss function, the NML com- 
plexity can be precisely bounded in terms of the Rademacher complexity defined 
relative to loss.  

2) Second, we should note that Rissanen's own views and research agenda have steered in a 
direction somewhat different from the developments we describe:  

• Rissanen89 published Information and Complexity in Statistical Modeling, which 
proposes foundations of statistics in which no underlying “true model" is ever assumed 
to exist.  

• As Rissanen writes, “even such a well-meaning statement as ‘all models are wrong, but 
some are useful’, is meaningless unless some model is `true'".  

• Rissanen expands MDL and NML ideas in the direction of the Kolmogorov Structure 
Function, taking the idea of distinguishable distributions underlying Ref. 1925 as the 
fundamental; while presumably compatible with the developments we describe here, 
the emphasis of this work is quite different. 

• We end with a word about applications:  
o since 2007, numerous applications of MDL and MDL-like techniques have been described in the 

literature;  
o as discussed in Sec. 6.2, highly popular methods such as Lasso and Bayes factor methods 

can often be seen as “MDL-like". 

                                                        
25 I. J. Myung, V. Balasubramanian and M. A. Pitt, Counting probability distributions: Differential geometry and 
model selection, Proc. Natl. Acad. Sci. USA 97 (2000) 11170–11175. 



o Even as to specific “pure" MDL applications (such as based on NML and two-part codes), the 
number and scope of applications are simply too large to give a succinct representative overview.  

o However, there is one particular area which we would like to mention specifically, since that area 
had hardly seen any MDL applications before 2007 whereas nowadays such applications are 
flourishing:  
o this is the field of Data Mining.  

• Some representative publications are Refs. 90–9226,27,28.  
• Most of this work centers on the use of two-part codes, but sometimes NML and other 

sophisticated universal distributions/codes are used as well 9329. 

                                                        
26 J. Vreeken, M. van Leeuwen and A. Siebes, Krimp: Mining item sets that compress, Data Min. Knowl. Disc. 
23(1) (2011) 169–214. 
27 D. Koutra, U. Kang, J. Vreeken and C. Faloutsos, Summarizing and understanding large graphs, Stat. Anal. Data 
Min., ASA Data Sci. J. 8(3) (2015) 183–202. 
28 K. Budhathoki, J. Vreeken and J. Origo, Causal inference by compression, Knowl. Inf. Syst. 56(2) (2018) 285–
307. 
29 N. Tatti and J. Vreeken, Finding good item sets by packing data, in Eighth IEEE Int. Conf. Data Mining (IEEE, 
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