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We found that the Machine Learning-based model outperformed any
other physically-based model regarding simulation of streamflow.

Basin-wise comparison of streamflow

revedls superior performance of machine-learning based model in calibration (A) and dll validation experiments
(B-D). Locally calibrated models fransfer well in time (A vs C) while spafial fransfer shows potential for improvement
(A vs Band C vs D). On average, regionally calibrated models are the one with least performance.
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Multi-objective multi-variable comparison of streamflow and additional variables

identifies overadll well-performing locally calibrated

models (i.e., HYMODZ2-lumped) and regionally calibrated mod-

els (i.e., MESH-SVS-Raven and GEM- Hydro-Waftroutfe) due to varying reasons. The machine- learning-lbased model
is Not included here as it is not set up to simulate the additional variables such as AET, SSM, and SWE.
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This highly standardized model comparison led to a plenitude of
Insights on model performance regarding streamflow and beyond.
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This poster has been designed using images from Flaticon.com.



