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Abstract

Deep neural networks have demonstrated remarkable performance in supervised learning
tasks but require large amounts of labeled data. Self-supervised learning offers an alternative
paradigm, enabling the model to learn from data without explicit labels. Information theory
has been instrumental in understanding and optimizing deep neural networks. Specifically,
the information bottleneck principle has been applied to optimize the trade-off between
compression and relevant information preservation in supervised settings. However, the
optimal information objective in self-supervised learning remains unclear. In this paper,
we review various approaches to self-supervised learning from an information-theoretic
standpoint and present a unified framework that formalizes the self-supervised information-
theoretic learning problem. We integrate existing research into a coherent framework,
examine recent self-supervised methods, and identify research opportunities and challenges.
Moreover, we discuss empirical measurement of information-theoretic quantities and their
estimators. This paper offers a comprehensive review of the intersection between information
theory, self-supervised learning, and deep neural networks.

Keywords: Self-Supervised Learning, Information Theory, Representation Learning

1. Introduction

Deep neural networks (DNNs) have revolutionized fields such as computer vision, natural
language processing, and speech recognition due to their remarkable performance in super-
vised learning tasks (Alam et al., 2020; He et al., 2015; LeCun et al., 2015). However, the
success of DNNs is often limited by the need for vast amounts of labeled data, which can
be both time-consuming and expensive to acquire. Self-supervised learning (SSL) emerges
as a promising alternative, enabling models to learn from data without explicit labels by
leveraging the underlying structure and relationships within the data itself.

Recent advances in SSL have been driven by joint embedding architectures, such as Siamese
Nets (Bromley et al., 1993), DrLIM (Chopra et al., 2005; Hadsell et al., 2006), and SimCLR
(Chen et al., 2020a). These approaches define a loss function that encourages representations
of different versions of the same image to be similar while pushing representations of distinct
images apart. After optimizing the surrogate objective, the pre-trained model can be
employed as a feature extractor, with the learned features serving as inputs for downstream
supervised tasks like image classification, object detection, instance segmentation, or pose
estimation (Caron et al., 2021; Chen et al., 2020a; Misra and van der Maaten, 2020; Shwartz-
Ziv et al., 2022b). Although SSL methods have shown promising results in practice, the
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theoretical underpinnings behind their effectiveness remain an open question (Arora et al.,
2019; Lee et al., 2021a).

Information theory has played a crucial role in understanding and optimizing deep neural
networks, from practical applications like the variational information bottleneck (Alemi
et al., 2016) to theoretical investigations of generalization bounds induced by mutual
information (Steinke and Zakynthinou, 2020; Xu and Raginsky, 2017). Building upon
these foundations, several researchers have attempted to enhance self-supervised and semi-
supervised learning algorithms using information-theoretic principles, such as the Mutual
Information Neural Estimator (MINE) (Belghazi et al., 2018b) combined with the information
maximization (InfoMax) principle (Linsker, 1988). However, the plethora of objective
functions, contradicting assumptions, and various estimation techniques in the literature
can make it challenging to grasp the underlying principles and their implications.

In this paper, we aim to achieve two objectives. First, we propose a unified framework
that synthesizes existing research on self-supervised and semi-supervised learning from an
information-theoretic standpoint. This framework allows us to present and compare current
methods, analyze their assumptions and difficulties, and discuss the optimal representation
for neural networks in general and self-supervised networks in particular. Second, we explore
different methods and estimators for optimizing information-theoretic quantities in deep
neural networks and investigate how recent models optimize various theoretical-information
terms.

By reviewing the literature on various aspects of information-theoretic learning, we provide
a comprehensive understanding of the interplay between information theory, self-supervised
learning, and deep neural networks. We discuss the application of the information bottleneck
principle (Tishby et al., 1999a), connections between information theory and generalization,
and recent information-theoretic learning algorithms. Furthermore, we examine how the
information-theoretic perspective can offer insights into the design of better self-supervised
learning algorithms and the potential benefits of using information theory in SSL across a
wide range of applications.

In addition to the main structure of the paper, we dedicate a section to the challenges and
opportunities in extending the information-theoretic perspective to other learning paradigms,
such as energy-based models. We highlight the potential advantages of incorporating these
extensions into self-supervised learning algorithms and discuss the technical and conceptual
challenges that need to be addressed.

The structure of the paper is as follows. Section 2 introduces the key concepts in supervised,
semi-supervised, and self-supervised learning, information theory, and representation learning.
Section 3 presents a unified framework for multiview learning based on information theory.
We first discuss what an optimal representation is and why compression is beneficial for
learning. Next, we explore optimal representation in single-view supervised learning models
and how they can be extended to unsupervised, semi-supervised, and multiview contexts.
The focus then shifts to self-supervised learning, where the optimal representation remains
an open question. Using the unified framework, we compare recent self-supervised algorithms
and discuss their differences. We analyze the assumptions behind these models, their effects
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on the learned representation, and their varying perspectives on important information
within the network.

Section 5 addresses several technical challenges, discussing both theoretical and practical
issues in estimating theoretical information terms. We present recent methods for estimating
these quantities, including variational bounds and estimators. Section 6 concludes the paper
by offering insights into potential future research directions at the intersection of information
theory, self-supervised learning, and deep neural networks. Our aim is to inspire further
research that leverages information theory to advance our understanding of self-supervised
learning and to develop more efficient and effective models for a broad range of applications.

2. Background and Fundamental Concepts

2.1 Multiview Representation Learning

Multiview learning has gained increasing attention and great practical success by using
complementary information from multiple features or modalities. The multiview learning
paradigm divides the input variable into multiple views from which the target variable
should be predicted (Zhao et al., 2017b). Using this paradigm, one can eliminate hypotheses
that contradict predictions from other views and provide a natural semi-supervised and
self-supervised learning setting. A multiview dataset consists of data captured from multiple
sources, modalities, and forms but with similar high-level semantics (Yan et al., 2021). This
mechanism was initially used for natural-world data, combining image, text, audio, and
video measurements. For example, photos of objects are taken from various angles, and
our supervised task is to identify the objects. Another example is to identify a person by
analyzing the video stream as one view and the audio stream as the other.

Although these views often provide different and complementary information about the
same data, directly integrating them does not produce satisfactory results due to biases
between multiple views (Yan et al., 2021). Thus, multiview representation learning involves
identifying the underlying data structure and attempting to integrate the different views
into a common feature space, resulting in high performance. In recent decades, multiview
learning has been used for many machine learning tasks and influenced many algorithms,
such as co-training mechanisms (Kumar and Daumé, 2011), subspace learning methods
(Xue et al., 2019), and multiple kernel learning (MKL) (Bach and Jordan, 2002). Li
et al. (2018) proposed two categories for multiview representation learning: (i) multiview
representation fusion, which combines different features from multiple views into a single
compact representation, and (ii) alignment of multiview representation, which attempts to
capture the relationships among multiple different views through feature alignment. In this
case, a learned mapping function embeds the data of each view, and the representations
are regularized to form a multiview-aligned space. In this research direction, an early study
is the Canonical Correlation Analysis (CCA) (Hotelling, 1936) and its kernel extensions
(Bach and Jordan, 2003; Hardoon et al., 2004; Sun, 2013). In addition to CCA, multiview
representation learning has penetrated a variety of learning methods, such as dimensionality
reduction (Sun et al., 2010), clustering analysis (Yan et al., 2015), multiview sparse coding
(Cao et al., 2013; Jia et al., 2010; Liu et al., 2014), and multimodal topic learning (Pu et al.,
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2020). However, despite their promising results, these methods use handcrafted features
and linear embedding functions, which cannot capture the nonlinear properties of multiview
data.

The emergence of deep learning has provided a powerful way to learn complex, nonlinear,
and hierarchical representations of data. By incorporating multiple hierarchical layers, deep
learning algorithms are able to learn complex, subtle, and abstract representations of target
data. The success of deep learning in various application domains has led to a growing
interest in deep multiview methods, which have shown promising results. Examples of
these methods include deep multiview canonical correlation analysis (Andrew et al., 2013)
as an extension of CCA, multiview clustering via deep matrix factorization (Zhao et al.,
2017a), and the deep multiview spectral network (Huang et al., 2019). Moreover, deep
architectures have been employed to generate effective representations in methods such as
multiview convolutional neural networks (Liu et al., 2021a), multimodal deep Boltzmann
machines (Srivastava and Salakhutdinov, 2014), multimodal deep autoencoders (Ngiam
et al., 2011; Wang et al., 2015), and multimodal recurrent neural networks (Donahue et al.,
2015; Karpathy and Fei-Fei, 2015; Mao et al., 2014).

2.2 Self-Supervised Learning

Self-supervised learning (SSL) is a powerful technique that leverages unlabeled data to learn
useful representations. In contrast to supervised learning, which relies on labeled data, SSL
employs self-defined signals to establish a proxy objective between the input and the signal.
The model is initially trained using this proxy objective and subsequently fine-tuned on the
target task. Self-supervised signals, derived from the inherent co-occurrence relationships
in the data, serve as self-supervision. A variety of such signals have been used to learn
representations, including generative and joint embedding architectures (Bachman et al.,
2019; Chen et al., 2020a,b).

Two main categories of SSL architectures exist: (1) generative architectures based on
reconstruction or prediction, and (2) joint embedding architectures (Liu et al., 2021b). Both
architecture classes can be trained using either contrastive or non-contrastive methods.

We begin by discussing these two main types of architectures:

1. Generative Architecture: Generative architectures employ an objective function
that measures the divergence between input data and predicted reconstructions, such
as squared error. The architecture reconstructs data from a latent variable or a
corrupted version thereof, potentially with the assistance of a latent variable. Notable
examples of generative architectures include auto-encoders, sparse coding, sparse
auto-encoders, and variational auto-encoders (Kingma and Welling, 2013; Lee et al.,
2006; Ng et al., 2011). As the reconstruction task lacks a single correct answer, most
generative architectures utilize a latent variable, which when varied, generates multiple
reconstructions. The latent variable’s information content requires regularization to
ensure the system reconstructs regions of high data density while avoiding a collapse
by reconstructing the entire space. PCA regularizes the latent variable by limiting
its dimensions, while sparse coding and sparse auto-encoders restrict the number
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of non-zero components. Variational auto-encoders regularize the latent variable by
rendering it stochastic and maximizing the entropy of the distribution relative to a
prior. Vector quantized variational auto-encoders (VQ-VAE) employ binary stochastic
variables to achieve similar results (Van Den Oord et al., 2017).

2. Joint Embedding Architectures (JEA): These architectures process multiple
views of an input signal through encoders, producing representations of the views. The
system is trained to ensure that these representations are both informative and mutually
predictable. Examples include Siamese networks, where two identical encoders share
weights (Chen et al., 2020a; Chen and He, 2021; Grill et al., 2020; He et al., 2020),
and methods permitting encoders to differ (Bardes et al., 2021). A primary challenge
with JEA is preventing informational collapse, in which the representations contain
minimal information about the inputs, thereby facilitating their mutual prediction.
JEA’s advantage lies in the encoders’ ability to eliminate noisy, unpredictable, or
irrelevant information from the input within the representation space.

To effectively train these architectures, it is essential to ensure that the representations
of different signals are distinct. This can be achieved through either contrastive or non-
contrastive methods:

• Contrastive Methods: Contrastive methods utilize data points from the training
set as positive samples and generate points outside the region of high data density as
contrastive samples. The energy (e.g., reconstruction error for generative architectures
or representation predictive error for JEA) should be low for positive samples and
higher for contrastive samples. Various loss functions involving the energies of pairs or
sets of samples can be minimized to achieve this objective.

• Non-Contrastive Methods: Non-contrastive methods prevent the energy land-
scape’s collapse by limiting the volume of space that can take low energy, either
through architectural constraints or through a regularizer in the energy or training
objective. In latent-variable generative architectures, preventing collapse is achieved by
limiting or minimizing the information content of the latent variable. In JEA, collapse
is prevented by maximizing the information content of the representations.

We now present a few concrete examples of popular models that employ various combinations
of generative architectures, joint embedding architectures, contrastive training, and non-
contrastive training:

The Denoising Autoencoder approach in generative architectures (Devlin et al., 2018; He
et al., 2022; Vincent et al., 2008) using a triplet loss which utilizes a positive sample, which is
a vector from the training set that should be reconstructed perfectly, and a contrastive sample
consisting of data vectors, one from the training set and the other being a corrupted version
of it. In SSL, the combination of JEA models with contrastive learning has proven to be
highly effective. In contrastive learning, the objective is to attract different augmented views
of the same image (positive points), while repelling dissimilar augmented views (negative
points). Recent examples of self-supervised visual representation learning include MoCo
(He et al., 2020) and SimCLR (Chen et al., 2020a). The InfoNCE loss is a commonly used
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objective function in many contrastive learning methods:

Ex,x+,x−

[
− log

(
ef(x)T f(x+)∑

k = 1Kef(x)T f(xk)

)]

where x+ is a sample similar to x, xk are all the samples in the batch, and f is an encoder.

However, contrastive methods heavily depend on all other samples in the batch and require a
large batch size. Additionally, recent studies (Jing et al., 2021) have shown that contrastive
learning can lead to dimensional collapse, where the embedding vectors span a lower-
dimensional subspace instead of the entire embedding space. Although positive and negative
pairs should repel each other to prevent dimensional collapse, augmentation along feature
dimensions and implicit regularization cause the embedding vectors to fall into a lower-
dimensional subspace, resulting in low-rank solutions.

To address these problems, recent works have introduced JEA models with non-contrastive
methods. Unlike contrastive methods, these methods employ regularization to prevent the
collapse of the representation and do not explicitly rely on negative samples. For example,
several papers use stop-gradients and extra predictors to avoid collapse (Chen and He, 2021;
Grill et al., 2020), while Caron et al. (2020) employed an additional clustering step. VICReg
(Bardes et al., 2021) is another non-contrastive method that regularizes the covariance
matrix of representation. Consider two embedding batches Z = [f(x1), . . . , f(xN )] and
Z ′ = [f(x′1), . . . , f(x′N)], each of size (N × K). Denote by C the (K × K) covariance
matrix obtained from [Z,Z ′]. The VICReg triplet loss is defined by:

L=
1

K

K∑
k=1

αmax
(

0, γ −
√
Ck,k + ε

)
+β

∑
k′ 6=k

(
Ck,k′

)2 + γ‖Z −Z ′‖2F /N.

2.3 Semi-Supervised Learning

Semi-supervised learning employs both labeled and unlabeled data to enhance the model
performance (Chapelle et al., 2009). Consistency regularization-based approaches (Laine
and Aila, 2016; Miyato et al., 2018; Sohn et al., 2020) ensure that predictions remain stable
under perturbations in input data and model parameters. Certain techniques, such as those
proposed by Grandvalet and Bengio (2006) and Miyato et al. (2018), involve training a model
by incorporating a regularization term into a supervised cross-entropy loss. In contrast, Xie
et al. (2020) utilizes suitably weighted unsupervised regularization terms, while Zhai et al.
(2019) adopts a combination of self-supervised pretext loss terms. Moreover, pseudo-labeling
can generate synthetic labels based on network uncertainty to further aid model training
(Lee et al., 2013).

2.4 Representation Learning

Representation learning is an essential aspect of various computer vision, natural language
processing, and machine learning tasks, as it uncovers the underlying structures in data
(Bengio et al., 2013). By extracting relevant information for classification and prediction
tasks from the data, we can improve performance and reduce computational complexity
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(Goodfellow et al., 2016). However, defining an effective representation remains a challenging
task. In probabilistic models, a useful representation often captures the posterior distribution
of explanatory factors beneath the observed input (LeCun et al., 2015). Bengio and LeCun
(2007) introduced the idea of learning highly structured yet complex dependencies for AI
tasks, which require transforming high-dimensional input structures into low-dimensional
output structures or learning low-level representations. As a result, identifying relevant input
features becomes challenging, as most input entropy is unrelated to the output (Shwartz-Ziv
and Tishby, 2017).

2.4.1 Minimal Sufficient Statistic

A possible definition of an effective representation is based on minimal sufficient statistics.

Definition 1 Given (X,Y ) ∼ P (X,Y ), let T := t(X), where t is a deterministic function.
We define T as a sufficient statistic of X for Y if Y − T −X forms a Markov chain.

A sufficient statistic captures all the information about Y in X. Cover (1999) proved this
property:

Theorem 2 Let T be a probabilistic function of X. Then, T is a sufficient statistic for Y
if and only if I(T (X);Y ) = I(X;Y ).

However, the sufficiency definition also encompasses trivial identity statistics that only ”copy”
rather than ”extract” essential information. To prevent statistics from inefficiently utilizing
observations, the concept of minimal sufficient statistics was introduced:

Definition 3 (Minimal sufficient statistic (MSS)) A sufficient statistic T is minimal if, for
any other sufficient statistic S, there exists a function f such that T = f(S) almost surely
(a.s.).

In essence, MSS are the simplest sufficient statistics, inducing the coarsest sufficient partition
on X. In MSS, the values of X are grouped into as few partitions as possible without
sacrificing information. MSS are statistics with the maximum information about Y while
retaining the least information about X as possible (Koopman, 1936).

2.4.2 The Information Bottleneck

The majority of distributions lack exact minimal sufficient statistics, leading Tishby et al.
(1999b) to relax the optimization problem in two ways: (i) allowing the map to be stochastic,
defined as an encoder P (T |X), and (ii) permitting the capture of only a small amount of
I(X;Y ). The information bottleneck (IB) was introduced as a principled method to extract
relevant information from observed signals related to a target. This framework finds the
optimal trade-off between the accuracy and complexity of a random variable y ∈ Y with a
joint distribution for a random variable x ∈ X. The IB has been employed in various fields
such as neuroscience (Buesing and Maass, 2010; Palmer et al., 2015), slow feature analysis
(Turner and Sahani, 2007), speech recognition (Hecht et al., 2009), and deep learning (Alemi
et al., 2016; Shwartz-Ziv and Tishby, 2017).

Let X be an input random variable, Y a target variable, and P (X,Y ) their joint distribution.
A representation T is a stochastic function of X defined by a mapping P (T | X). This
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mapping transforms X ∼ P (X) into a representation of T ∼ P (T ) :=
∫
PT |X(· | x)dPX(x).

The triple Y −X−T forms a Markov chain in that order with respect to the joint probability
measure PX,Y,T = PX,Y PT |X and the mutual information terms I(X;T ) and I(Y ;T ).

Within the IB framework, our goal is to find a representation P (T | X) that extracts as much
information as possible about Y (high performance) while compressing X maximally (keeping
I(X;T ) small). This can also be interpreted as extracting only the relevant information
that X contains about Y .

The data processing inequality (DPI) implies that I(Y ;T ) ≤ I(X;Y ), so the compressed
representation T cannot convey more information than the original signal. Consequently,
there is a trade-off between compressed representation and the preservation of relevant
information about Y . The construction of an efficient representation variable is characterized
by its encoder and decoder distributions, P (T | X) and P (Y | T ), respectively. The efficient
representation of X involves minimizing the complexity of the representation I (T ;X) while
maximizing I (T ;Y ). Formally, the IB optimization involves minimizing the following
objective function:

L = min
P (t|x);p(y|t)

I(X;T )− βI(Y ;T ) , (1)

where β is the trade-off parameter controlling the complexity of T and the amount of relevant
information it preserves. Intuitively, we pass the information that X contains about Y
through a “bottleneck” via the representation T . It has been shown that:

I(T : Y ) = I(X : Y )− Ex∼P (X),t∼P (T |x) [D [P (Y |x)||P (Y |t)]] (2)

2.5 Representation Learning and the Information Bottleneck

Information theory traditionally assumes that underlying probabilities are known and do not
require learning. For instance, the optimality of the initial IB work (Tishby et al., 1999b)
relied on the assumption that the joint distribution of input and labels is known. However,
a significant challenge in machine learning algorithms is inferring an accurate predictor for
the unknown target variable from observed realizations. This discrepancy raises questions
about the practical optimality of the IB and its relevance in modern learning algorithms.
The following section delves into the relationship between the IB framework and learning,
inference, and generalization.

Let X ∈ X and a target variable Y ∈ Y be random variables with an unknown joint
distribution P (X,Y ). For a given class of predictors f : X→ Ŷ and a loss function ` : Y→ Ŷ

measuring discrepancies between true values and model predictions, our objective is to find
the predictor f that minimizes the expected population risk.

LP (X,Y ) (f, `) = EP (X,Y ) [`(Y, f(X))]

Several issues arise with the population risk. Firstly, it remains unclear which loss function
is optimal. A popular choice is the logarithmic loss (or error’s entropy), which has been
numerically demonstrated to yield better results (Erdogmus, 2002). This loss has been
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employed in various algorithms, including the InfoMax principle (Linsker, 1988), tree-based
algorithms (Quinlan, 2014), deep neural networks (Zhang and Sabuncu, 2018), and Bayesian
modeling (Wenzel et al., 2020). Painsky and Wornell (2018) provided a rigorous justification
for using the logarithmic loss and showed that it is an upper bound to any choice of loss
function that is smooth, proper, and convex for binary classification problems.

In most cases, the joint distribution P (X,Y ) is unknown, and we have access to only n
samples from it, denoted by Dn := (xi, yi) | i = 1, . . . , n. Consequently, the population risk
cannot be computed directly. Instead, we typically choose the predictor that minimizes the
empirical population risk on a training dataset:

L̂P (X,Y ) (f, `,Dn) =
1

n

n∑
i=1

[`(yi, f(xi))]

The generalization gap, defined as the difference between empirical and population risks, is
given by:

GenP (X,Y ) (f, `,Dn) := LP (X,Y ) (f, `)− L̂P (X,Y ) (f, `,Dn)

Interestingly, the relationship between the true loss and the empirical loss can be bounded
using the information bottleneck term. Shamir et al. (2010) developed several finite sample
bounds for the generalization gap. According to their study, the IB framework exhibited
good generalizability even with small sample sizes. In particular, they developed non-uniform
bounds adaptive to the model’s complexity. They demonstrated that for the discrete case,

the error in estimating mutual information from finite samples is bounded by O
(
|X| logn√

n

)
,

where |X| is the cardinality of X (the number of possible values that the random variable
X can take). The results support the intuition that simpler models generalize better, and
we would like to compress our model. Therefore, optimizing eq. (1) presents a trade-off
between two opposing forces. On one hand, we want to increase our prediction accuracy in
our training data (high β). On the other hand, we would like to decrease β to narrow the
generalization gap. Vera et al. (2018) extended their work and showed that the generalization
gap is bounded by the square root of mutual information between training input and model
representation times logn

n . Furthermore, Russo and Zou (2019) and Xu and Raginsky (2017)
demonstrated that the square root of the mutual information between the training input
and the parameters inferred from the training algorithm provides a concise bound on the
generalization gap. However, these bounds critically depend on the Markov operator that
maps the training set to the network parameters, whose characterization is not trivial.

Achille and Soatto (2018) explored how applying the IB objective to the network’s parameters
may reduce overfitting while maintaining invariant representations. Their work showed
that flat minima, which have better generalization properties, bound the information with
the weights, and the information in the weights bound the information in the activations.
Chelombiev et al. (2019) found that the generalization precision is positively correlated with
the degree of compression of the last layer in the network. Shwartz-Ziv et al. (2018) showed
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that the generalization error depends exponentially on the mutual information between the
model and the input once it is smaller than log 2n - the query sample complexity. Moreover,
they demonstrated that M bits of compression of X are equivalent to an exponential factor
of 2M training examples. Piran et al. (2020) extended the original IB to the dual form,
which offers several advantages in terms of compression.

These studies illustrate that the IB leads to a trade-off between prediction and complexity,
even for the empirical distribution. With the IB objective, we can design estimators to
find optimal solutions for different regimes with varying performance, complexity, and
generalization.

3. Information-Theoretic Objectives

Before delving into the details, this section aims to provide an overview of the information-
theoretic objectives in various learning scenarios, including supervised, unsupervised, and
self-supervised settings. We will also introduce a general framework to better understand
the process of learning optimal representations and explore recent methods working towards
this goal.

The development of a novel algorithm entails numerous aspects, such as architecture,
initialization parameters, learning algorithms, and pre-processing techniques. A crucial
element, however, is the objective function. As demonstrated in Section 2.4.2, IB approach,
originally introduced by Tishby et al. (1999b), defines the optimal representation in supervised
scenarios, enabling us to identify which terms to compress during learning. However,
determining the optimal representation and deriving information-based objective functions
in self-supervised settings are more challenging. In this section, we introduce a general
framework to understand the process of learning optimal representations and explore recent
methods striving to achieve this goal.

3.1 Setup and Methodology

The choice of using a two-channel input, allows us to model complex multiview learning
problems. In many real-world situations, data can be observed from multiple perspectives
or modalities, making it essential to develop learning algorithms capable of handling such
multiview data.

Consider a two-channel input, X1 and X2, and a single-channel label Y for a downstream
task, all possessing a joint distribution P (X1, X2, Y ). We assume the availability of n labeled

examples S = (xi1, x
i
2, y

i)
n
i=1 and t unlabeled examples U = (xi1, x

i
2)
n+t
i=n+1, both independently

and identically distributed. Our objective is to predict Y using a loss function.

In our model, we use a learned encoder with a prior P (Z) to generate a conditional
representation (which may be deterministic or stochastic) Zi|Xi = Pθi(Zi|Xi), where i = 1, 2
represents the two views. Subsequently, we utilize various decoders to ’decode’ distinct
aspects of the representation:
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Complexity

Unsupervised
Reconstruction Supervised Prediction Self-Supervised

Predication Supervised Prediction Unsupervised
Reconstruction 

Complexity

Figure 1: Multiview information bottleneck diagram for self-supervised, unsupervised, and
supervised learning

For the supervised scenario, we have a joint embedding of the label classifiers from both
views, Ŷ1,2 = Qρ(Y |Z1, Z2), and two decoders predicting the labels of the downstream task
based on each individual view, Ŷi = Qρi(Y |Zi) for i = 1, 2.

For the unsupervised case, we have direct decoders for input reconstruction from the
representation, X̄i = Qψi

(Xi|Zi) for i = 1, 2.

For self-supervised learning, we utilize two cross-decoders attempting to predict one represen-
tation based on the other, Z̃1|Z2 = qη1(Z1|Z2) and Z̃2|Z1 = qη2(Z2|Z1). Figure 1 illustrates
this structure.

The information-theoretic perspective of self-supervised networks has led to confusion in
recent work regarding the information being optimized. In supervised and unsupervised
learning, only one ’information path’ exists when optimizing information-theoretic terms:
the input is encoded through the network, and then the representation is decoded and
compared to the targets. As a result, the representation and its corresponding information
always stem from a single encoder and decoder.

However, in the self-supervised multiview scenario, we can construct our representation
using various encoders and decoders. For instance, to define the information involved in
I(X1;Z1), we need to specify the associated random variable. This variable could either
be based on the encoder of X1 - Pθ1(Z1|X1), or based on the encoder of X2 - Pθ2(Z2|X2),
which is subsequently passed to the cross-decoder Qη1(Z1|Z2) and then to the direct decoder
Qψ1(X1|Z1).

To fully understand the information terms, we aim to optimize and distinguish between
various ”information paths,” we marked each information path differently. For example,
I,P (X1),P (Z1|X1),P (Z2|Z1) (X1, Z2) is based on the path P (X1) → P (Z1|X1) → P (Z2|Z1). In
the following section, we will ”translate” previous work into our present framework and
examine the loss function.
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3.2 Optimization with Labels

After establishing our framework, we can now incorporate various learning algorithms. We
begin by examining classical single-view supervised information bottleneck algorithms for
deep networks that utilize labeled data during training and extend them to the multiview
scenario. Next, we broaden our perspective to include unsupervised learning, where in-
put reconstruction replaces labels, and semi-supervised learning, where information-based
regularization is applied to improve predictions.

3.2.1 Single-View Supervised Learning

In classical single-view supervised learning, the task of representation learning involves
finding a distribution p(z|x) that maps data observations x ∈ X to a representation z ∈ Z,
capturing only the relevant features of the input Shwartz-Ziv (2022). The goal is to predict
a label y ∈ Y using the learned representation. Achille and Soatto (2018) defined the
sufficiency of Z for Y as the amount of label information retained after passing data through
the encoder:

Definition 4 Sufficiency: A representation Z of X is sufficient for Y if and only if
I(X;Y |Z) = 0.

Federici et al. (2020) showed that Z is sufficient for Y if and only if the amount of information
regarding the task remains unchanged by the encoding procedure. A sufficient representation
can predict Y as accurately as the original data X. In Section 2.4, we saw a trade-off
between prediction and generalization when there is a finite amount of data. To reduce the
generalization gap, we aim to compress X while retaining as much predicate information on
the labels as possible. Thus, we relax the sufficiency definition and minimize the following
objective:

L = I(X;Z)− βI(Z;Y ) (3)

The mutual information I(Y ;Z) determines how much label information is accessible and
reflects the model’s ability to predict performance on the target task. I(X;Z) represents the
information that Z carries about the input, which we aim to compress. However, I(X;Z)
contains both relevant and irrelevant information about Y . Therefore, using the chain rule
of information, Federici et al. (2020) proposed splitting I(X,Z) into two terms:

I(X;Z) = I(X;Z|Y )︸ ︷︷ ︸
superfluous information

+ I(Z;Y )︸ ︷︷ ︸
predictive information

(4)

The conditional information I(X,Z|Y ) represents information in Z that is not predictive
of Y , i.e., superfluous information. The decomposition of input information enables us to
compress only irrelevant information while preserving the relevant information for predicting
Y . Several methods are available for evaluating and estimating these information-theoretic
terms in the supervised case (see Section 5 for details).
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3.2.2 The Information Bottleneck Theory of Deep Learning

The IB hypothesis for deep learning proposes two distinct phases of training neural networks
(Shwartz-Ziv and Tishby, 2017): the fitting phase and the compression phase. The fitting
phase involves extracting information from the input and converting it into learned repre-
sentations, characterized by an increase in mutual information between inputs and hidden
representations. Conversely, the compression phase, which is much longer, concentrates on
discarding unnecessary information for target prediction, resulting in a decrease in mutual
information between learned representations and inputs, while the mutual information
between representations and targets increases. For more information, see Geiger (2020).
Despite the elegance and plausibility of the IB hypothesis, empirically investigating it remains
challenging (Amjad and Geiger, 2018).

The study of representation compression in Deep Neural Networks (DNNs) for supervised
learning has shown inconsistent results. For instance, Chelombiev et al. (2019) discovered
a positive correlation between generalization accuracy and the compression level of the
network’s final layer. Shwartz-Ziv et al. (2018) also examined the relationship between
generalization and compression, demonstrating that generalization error exponentially de-
pends on mutual information, I(X;Z). Furthermore, Achille et al. (2017) established that
flat minima, known for their improved generalization properties, constrain the mutual
information. However, Saxe et al. (2019) showed that compression was not necessary for
generalization in deep linear networks. Basirat et al. (2021) revealed that the decrease in
mutual information is essentially equivalent to geometrical compression. Other studies have
found that the mutual information between training inputs and inferred parameters provides
a concise bound on the generalization gap (Pensia et al., 2018; Xu and Raginsky, 2017).
Lastly, Achille and Soatto (2018) explored the use of an information bottleneck objective on
network parameters to prevent overfitting and promote invariant representations.

3.2.3 Multiview IB Learning

The IB principle offers a rigorous method for learning encoders and decoders in supervised
single-view problems but is not directly applicable to multiview learning problems, as it
assumes only one information source as the input. A common solution is to concatenate
multiple views, though this neglects the unique characteristics of each view. To address this
issue, Xu et al. (2014) introduced the large-margin multiview IB (LMIB) as an extension of
the original IB problem. LMIB employs a communication system where multiple senders
represent various views of examples. The system extracts specific components from different
senders by compressing examples through a ”bottleneck,” and the linear projectors for each
view are combined to create a shared representation. The large-margin principle replaces the
maximization of mutual information in prediction, emphasizing the separation of samples
from different classes. By limiting Rademacher complexity, the solution’s accuracy and
generalization error bounds are improved. Moreover, the algorithm’s robustness is enhanced
when accurate views counterbalance noisy views.

However, the LMIB method has a significant limitation: it utilizes linear projections for
each view, which can restrict the combined representation when the relationship between
different views is complex. To overcome this limitation, Wang et al. (2019) proposed using
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deep neural networks to replace linear projectors. Their model first extracts concise latent
representations from each view using deep networks and then learns the joint representation
of all views using neural networks. They minimize the objective:

L = αIP (X1),P (Z1|X1)(X1;Z1) + βIP (X2),P (Z2|X2)(X2;Z2)− IP (Z2|X2),P (Z2|X1)(Z1,2;Y )

Here, α and β are trade-off parameters, Z1 and Z2 are the two neural networks’ represen-
tations, and Z1,2 is the joint embedding of Z1 and Z2. The first two terms decrease the
mutual information between a view’s latent representation and its original data representa-
tion, resulting in a simpler and more generalizable model. The final term forces the joint
representation to maximize the discrimination ability for the downstream task.

3.2.4 Semi-Supervised IB Learning: Leveraging Unlabeled Data

In many practical scenarios, obtaining labeled data can be challenging or expensive, while a
large number of unlabeled samples may be readily available. Semi-supervised learning aims
to address this issue by leveraging the vast amount of unlabeled data during training, in
conjunction with a small set of labeled samples. Common strategies to achieve this involve
adding regularization terms or adopting mechanisms that promote better generalization.
Berthelot et al. (2019) grouped regularization methods into three primary categories: entropy
minimization, consistency regularization, and generic regularization.

Voloshynovskiy et al. (2020) introduced an information-theoretic framework for semi-
supervised learning based on the IB principle. In this context, the semi-supervised classi-
fication problem involves encoding input X into the latent space Z while preserving only
class-relevant information. A supervised classifier can achieve this if there is sufficient
labeled data. However, when the number of labeled examples is limited, the standard label
classifier p(y|z) becomes unreliable and requires regularization.

To tackle this issue, the authors assumed a prior on the class label distribution p(y). They
introduced a term to minimize the DKL between the assumed marginal prior and the
empirical marginal prior, effectively regularizing the conditional label classifier with the
labels’ marginal distribution. This approach reduces the classifier’s sensitivity to the scarcity
of labeled examples. They proposed two variational IB semi-supervised extensions for the
priors:

Hand-Crafted Priors: These priors are predefined for regularization and can be based on
domain knowledge or statistical properties of the data. Alternatively, they can be learned
using other networks. Hand-crafted priors in this context are similar to priors used in the
Variational Information Bottleneck (VIB) formalism (Alemi et al., 2016; Wang et al., 2019).

Learnable Priors: Voloshynovskiy et al. (2020) also suggests using learnable priors as an
alternative to handcrafted regularization priors on the latent representation. This method
involves regularizing Z through another IB-based regularization with two components: (i)
latent space regularization and (ii) observation space regularization. In this case, an additional
hidden variable M is introduced after the representation to regulate the information flow
between Z and Y . An auto-encoder q(m|z) is employed, and the optimization process
aims to compress the information flowing from Z to M while retaining only label-relevant
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information. The IB objective is defined as:

L = DKL(q(m|z)||p(m|z))− βDKL(q(x|m)||p(x|m))− βyDKL(p(y|z)||p(y))

⇔ I(M ;Z)− βI(M ;X)− βyI(Y ;Z)
(5)

Here, β and βy are hyperparameters that balance the trade-off between the relevance of M
to the labels and the compression of Z into M .

Furthermore, Voloshynovskiy et al. (2020) demonstrated that various popular semi-supervised
methods can be considered special cases of the optimization problem described above.
Notably, the semi-supervised AAE (Makhzani et al., 2015), CatGAN (Springenberg, 2015),
SeGMA (Smieja et al., 2019), and VAE (Kingma et al., 2014) can all be viewed as specific
instantiations of this framework.

3.2.5 Unsupervised IB learning

In the unsupervised setting, data samples are not directly labeled by classes. Voloshynovskiy
et al. (2020) defined unsupervised IB as a ’compressed’ parameterized mapping of X to Z,
which preserves some information in Z about X through the reverse decoder X̄ = Q(X|Z).
Therefore, the Lagrangian of unsupervised IB can be defined as follows:

IP (X),P (Z|X)(X;Z)− βIP (Z),Q(X|Z)(Z; X̄)

where I(X;Z) is the information determined by the encoder q(z|x) and I(Z; X̄) is the
information determined by the decoder q(x|z), i.e., the reconstruction error. In other
words, unsupervised IB is a special case of supervised IB, where labels are replaced with the
reconstruction performance of the training input. Alemi et al. (2016) showed that Variational
Autoencoder (VAE) (Kingma and Welling, 2019) and β-VAE (Higgins et al., 2017) are
special cases of unsupervised variational IB. Voloshynovskiy et al. (2020) extended their
results and showed that many models, including adversarial autoencoders (Makhzani et al.,
2015), InfoVAEs (Zhao et al., 2017c), and VAE/GANs (Larsen et al., 2016), could be viewed
as special cases of unsupervised IB. The main difference between them is the bounds on the
different mutual information of the IB. Furthermore, unsupervised IB was used by Uğur
et al. (2020) to derive lower bounds for their unsupervised generative clustering framework,
while Roy et al. (2018) used it to study vector-quantized autoencoders.

Voloshynovskiy et al. (2020) pointed out that for the classification task in supervised IB, the
latent space Z should be sufficient statistics for Y , whose entropy is much lower than X.
This results in a highly compressed representation where sequences close in the input space
might be close in the latent space, and the less significant features will be compressed. In
contrast, in the unsupervised setup, the IB suggests compressing the input to the encoded
representation so that each input sequence can be decoded uniquely. In this case, the latent
space’s entropy should correspond to the input space’s entropy, and compression is much
more difficult.
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4. Self-Supervised Multiview Information Bottleneck Learning

How can we learn without labels and still achieve good predictive power? Is compression
necessary to obtain an optimal representation? In this section, we analyze and discuss how
to achieve optimal representation for self-supervised learning when labels are not available
during training. We review recent methods for self-supervised learning and show how they
can be integrated into a single framework. We compare their objective functions, implicit
assumptions, and theoretical challenges. Finally, we consider the information-theoretic
properties of these representations, their optimality, and different ways of learning them.

One approach to enhance deep learning methods is to apply the InfoMax principle in a
multiview setting (Linsker, 1988; Wiskott and Sejnowski, 2002). As one of the earliest
approaches, Linsker (1988) proposed maximizing information transfer from input data to
its latent representation, showing its equivalence to maximizing the determinant of the
output covariance under the Gaussian distribution assumption. Becker and Hinton (1992)
introduced a representation learning approach based on maximizing an approximation of
the mutual information between alternative latent vectors obtained from the same image.
The most well-known application is the Independent Component Analysis (ICA) Infomax
algorithm (Bell and Sejnowski, 1995), designed to separate independent sources from their
linear combinations. The ICA-Infomax algorithm aims to maximize the mutual information
between mixtures and source estimates while imposing statistical independence among
outputs. The Deep Infomax approach (Hjelm et al., 2018) extends this idea to unsupervised
feature learning by maximizing the mutual information between input and output while
matching a prior distribution for the representations. Recent work has applied this principle
to a self-supervised multiview setting (Bachman et al., 2019; Henaff, 2020; Hjelm et al.,
2018; Tian et al., 2020a), wherein these works maximize the mutual information between the
views Z1 and Z2 using the classifier q(z1|z2), which attempts to predict one representation
from the other.

However, Tschannen et al. (2019) demonstrated that the effectiveness of InfoMax models is
more attributable to the inductive biases introduced by the architecture and estimators than
to the training objectives themselves, as the InfoMax objectives can be trivially maximized
using invertible encoders. Moreover, a fundamental issue with the InfoMax principle is that
it retains irrelevant information about the labels, contradicting the core concept of the IB
principle, which advocates for compressing the representation to enhance generalizability.

To resolve this problem, Sridharan and Kakade (2008) proposed the multiview IB framework.
According to this framework, in the multiview without labels setting, the IB principle of
preserving relevant data while compressing irrelevant data requires assumptions regarding
the relationship between views and labels. They presented the MultiView assumption, which
asserts that either view (approximately) would be sufficient for downstream tasks. By this
assumption, they define the relevant information as the shared information between the
views. Therefore, augmentations (such as changing the image style) should not affect the
labels. Additionally, the views will provide most of the information found in the input
regarding downstream tasks. By compressing the information not shared between the two
views, we improve generalization without affecting performance. Their formulation is as
follows:
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Assumption 1 The MultiView Assumption: There exists a εinfo (which is assumed to
be small) such that

I(Y ;X2|X1) ≤ εinfo,
I(Y ;X1|X2) ≤ εinfo.

As a result, when the information sharing parameter, εinfo, is small, the information shared
between views includes task-relevant details. For instance, in self-supervised contrastive
learning for visual data (Hjelm et al., 2018), views represent various augmentations of the
same image. In this scenario, the MultiView assumption is considered mild if the downstream
task remains unaffected by the augmentation (Geiping et al., 2022). Image augmentations
can be perceived as altering an image’s style without changing its content. Thus, Tsai et al.
(2020) contends that the information required for downstream tasks should be preserved in
the content rather than the style. This assumption allows us to separate the information
into relevant (shared information) and irrelevant (not shared) components and to compress
only the unimportant details that do not contain information about downstream tasks.
Based on this assumption, we aim to maximize the relevant information I(X2;Z1) and
minimize I(X1;Z1 | X2) - the exclusive information that Z1 contains about X1, which
cannot be predicted by observing X2. This irrelevant information is not necessary for the
prediction task and can be discarded. In the extreme case, where X1 and X2 share only label
information, this approach recovers the supervised IB method without labels. Conversely, if
X1 and X2 are identical, this method collapses into the InfoMax principle, as no information
can be accurately discarded.

Federici et al. (2020) used the relaxed Lagrangian objective to obtain the minimal sufficient
representation Z1 for X2 as:

L1 = IP (Z1|X1)(Z1;X1 | X2)− β1IP (Z2|X2),Q(Z1|Z2)(X2;Z1)

and the symmetric loss to obtain the minimal sufficient representation Z2 for X1:

L2 = IP (Z2|X2)(Z2;X2 | X1)− β2IP (Z1|X1),Q(Z2|Z1)I(X1;Z2)

where β1 and β2 are the Lagrangian multipliers introduced by the constraint optimization.
By defining Z1 and Z2 on the same domain and re-parameterizing the Lagrangian multipliers,
the average of the two loss functions can be upper bounded as:

L = −IP (Z1|X1),Q(Z2|Z1)(Z1;Z2) + βDSKL[p(z1 | x1)||P (z2 | x2)]

where DSKL represents the symmetrized KL divergence obtained by averaging the expected
value of DKL(p(z1 | x1)||p(z2 | x2)) and DKL(p(z2 | x2)||p(z1 | x1)). Note that when the
mapping from X1 to Z1 is deterministic, I(Z1;X1 | X2) minimization and H(Z1 | X2)
minimization are interchangeable and the algorithms of Federici et al. (2020) and Tsai et al.
(2020) minimize the same objective. Another implementation of the same idea is based on
the Conditional Entropy Bottleneck (CEB) algorithm (Fischer, 2020) and proposed by Lee
et al. (2021b). This algorithm adds the residual information as a compression term to the
InfoMax objective using the reverse decoders q(z1 | x2) and q(z2 | x1).
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In conclusion, all the above-mentioned algorithms are based on the Multi-view assump-
tion. Utilizing this assumption, they can distinguish relevant information from irrelevant
information. As a result, all these algorithms aim to maximize the information (or the
predictive ability) of one representation with respect to the other view while compressing
the information between each representation and its corresponding view. The key differences
between these algorithms lie in the decomposition and implementation of these information
terms.

Dubois et al. (2021) offers another theoretical analysis of the IB for self-supervised learning.
Their work addresses the question of the minimum bit rate required to store the input but
still achieve high performance on a family of downstream tasks Y ∈ Y. It is a rate-distortion
problem, where the goal is to find a compressed representation that will give us a good
prediction for every task. We require that the distortion measure is bounded:

DT(X,Z) = sup
Y ∈Y

H(Y | Z1)−H(Y | X1) ≤ δ.

Accessing the downstream task is necessary to find the solution during the learning process.
As a result, Dubois et al. (2021) considered only tasks invariant to some equivalence relation,
which divides the input into disjoint equivalence classes. An example would be an image
with labels that remain unchanged after augmentation. This is similar to the Multiview
assumption where εinfo → 0. By applying Shannon’s rate-distortion theory, they concluded
that the minimum achievable bit rate is the rate-distortion function with the above invariance
distortion. Thus, the optimal rate can be determined by minimizing the following Lagrangian:

L = min
P (Z1|X1)

IP (Z1|X1)(X1;Z1) + βH(Z2 | X1). (6)

By using this objective, the maximization of information with labels is replaced by maximizing
the prediction ability of one view from the original input, regularized by direct information
from the input. Similarly to the above results, we would like to find a representation Z1 that
compresses the input X1 so that Z1 has the maximum amount of information about X2.

4.1 Implicit Compression in Self-Supervised Learning Methods

While the optimal IB representation is based on the Multiview assumption, most self-
supervised learning models only use the infoMax principle and maximize the mutual in-
formation I(Z1;Z2) without an explicit regularization term. However, recent studies have
shown that contrastive learning creates compressed representations that include only relevant
information (Tian et al., 2020b; Wang et al., 2022). The question is, why is the learned
representation compressed? The maximization of I(Z1;Z2) could theoretically be sufficient
to retain all the information from both X1 and X2 by making the representations invertible.
In this section, we attempt to explain this phenomenon.

We begin with the InfoMax principle (Linsker, 1988), which maximizes the mutual information
between the representations of random variables Z1 and Z2 of the two views. We can lower-
bound it using:
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I(Z1;Z2) = H(Z)−H(Z1 | Z2) ≥ H(Z1) + E[log q(z1 | z2)] (7)

The bound is tight when q(z1|z2) = p(z1|z2), in which case the first term equals the
conditional entropy H(Z1|Z2). The second term of eq. (7) can be thought of as a negative
reconstruction error or distortion between Z1 and Z2.

In the supervised case, where Z is a learned stochastic representation of the input and Y is
the label, we aim to optimize

I(Y ;Z) ≥ H(Y ) + E [log q(Y | Z)] (8)

. Since Y is constant, optimizing the information I(Z;Y ) requires only minimizing the
prediction term E [log q(Y |Z)] by making Z more informative about Y . This term is the
cross-entropy loss for classification or the square loss for regressions. Thus, we can minimize
the log loss without any other regularization on the representation.

In contrast, for the self-supervised case, we have a more straightforward option to minimize
H(Z1|Z2): Making Z1 easier to predict by Z2, which can be achieved by reducing its variance
along specific dimensions. If we do not regularize H(Z1), it will decrease to zero, and we will
observe a collapse. This is why, in contrastive methods, the variance of the representation
(large entropy) is significant only in the directions that have a high variance in the data,
which is enforced by data augmentation (Jing et al., 2021). According to this analysis, the
network benefits from making the representations ”simple” (easier to predict). Hence, even
though our representation does not have explicit information-theoretical constraints, the
learning process will compress the representation.

4.2 Beyond the Multiview Assumption

According to the Multiview IB analysis presented in Section 4, the optimal way to create a
useful representation is to maximize the mutual information between the representations of
different views while compressing irrelevant information in each representation. In fact, as
discussed in Section 4.1, we can achieve this optimal compressed representation even without
explicit regularization. However, this optimality is based on the Multiview assumption,
which states that the relevant information for downstream tasks comes from the information
shared between views. Therefore, Tian et al. (2020b) concluded that when a minimal
sufficient representation has been obtained, the optimal views for self-supervised learning
are determined by downstream tasks.

However, the Multiview assumption is highly constrained, as all relevant information must
be shared between all views. In cases where this assumption is incorrect, such as with
aggressive data augmentation or multiple downstream tasks or modalities, sharing all the
necessary information can be challenging for the views. For example, if one view is a video
stream while the other is an audio stream, the shared information may be sufficient for
object recognition but not for tracking. Furthermore, relevant information for downstream
tasks may not be contained within the shared information between views, meaning that
removing non-shared information can negatively impact performance.
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Kahana and Hoshen (2022) identified a series of tasks that violate the Multiview assumption.
To accomplish these tasks, the learned representation must also be invariant to unwanted
attributes, such as bias removal and cross-domain retrieval. In such cases, only some
attributes have labels, and the objective is to learn an invariant representation for the
domain for which labels are provided, while also being informative for all other attributes
without labels. For example, for face images, only the identity labels may be provided, and
the goal is to learn a representation that captures the unlabeled pose attribute but contains
no information about the identity attribute. The task can also be applied to fair decisions,
cross-domain matching, model anonymization, and image translation.

Wang et al. (2022) formalized another case where the Multiview assumption does not
hold when non-shared task-relevant information cannot be ignored. In such cases, the
minimal sufficient representation contains less task-relevant information than other sufficient
representations, resulting in inferior performance. Furthermore, their analysis shows that in
such cases, the learned representation in contrastive learning is insufficient for downstream
tasks, which may overfit the shared information.

As a result of their analysis, Wang et al. (2022) and Kahana and Hoshen (2022) proposed
explicitly increasing mutual information between the representation and input to preserve
task-relevant information and prevent the compression of unshared information between
views. In this case, the two regularization terms of the two views are incorporated into the
original InfoMax objective, and the following objective is optimized:

L = min
P (Z1|X1),p(Z2|X2)

−IP (Z1|X1)(X1;Z1)− IP (Z2|X2)(X2;Z2)− βIP (Z1|X1),P (Z2|Z1)(Z1;Z2). (9)

Wang et al. (2022) demonstrated the effectiveness of their method for SimCLR (Chen
et al., 2020a), BYOL (Grill et al., 2020), and Barlow Twins (Zbontar et al., 2021) across
classification, detection, and segmentation tasks.

4.3 To Compress or Not to Compress?

As seen in Eq. 9, when the Multiview assumption is violated, the objective for obtaining an
optimal representation is to maximize the mutual information between each input and its
representation. This contrasts with the situation in which the Multiview assumption holds,
or the supervised case, where the objective is to minimize the mutual information between
the representation and the input. In both supervised and unsupervised cases, we have direct
access to the relevant information, which we can use to separate and compress irrelevant
information. However, in the self-supervised case, we depend heavily on the Multiview
assumption. If this assumption is violated due to unshared information between views that
is relevant for the downstream task, we cannot separate relevant and irrelevant information.
Furthermore, the learning algorithm’s nature requires that this information be protected by
explicitly maximizing it.

As datasets continue to expand in size and models are anticipated to serve as base models for
various downstream tasks, the Multiview assumption becomes less pertinent. Consequently,
compressing irrelevant information when the Multiview assumption does not hold presents
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one of the most significant challenges in self-supervised learning. Identifying new methods
to separate relevant from irrelevant information based on alternative assumptions is a
promising avenue for research. It is also essential to recognize that empirical measurement of
information-theoretic quantities and their estimators plays a crucial role in the development
and evaluation of such methods.

5. Optimizing Information in Deep Neural Networks: Challenges and
Approaches

Recent years have seen information-theoretic analyses employed to explain and optimize deep
learning techniques (Shwartz-Ziv and Tishby, 2017). Despite their elegance and plausibility,
measuring and analyzing information in deep networks empirically presents challenges. Two
critical problems are (1) information in deterministic networks and (2) estimating information
in high-dimensional spaces.

Information in Deterministic Networks

Information-theoretic methods have made a significant impact on deep learning (Alemi
et al., 2016; Shwartz-Ziv and Tishby, 2017; Steinke and Zakynthinou, 2020). However, a key
challenge is addressing the source of randomness in deterministic DNNs.

The mutual information between the input and representation is infinite, leading to ill-posed
optimization problems or piecewise constant outcomes (Amjad and Geiger, 2019; Goldfeld
et al., 2018). To tackle this issue, researchers have proposed various solutions. One common
approach is to discretize the input distribution and real-valued hidden representations by
binning, which facilitates non-trivial measurements and prevents the mutual information
from always taking the maximum value of the log of the dataset size, thus avoiding ill-posed
optimization problems (Shwartz-Ziv and Tishby, 2017).

However, binning and discretization are essentially equivalent to geometrical compression
and serve as clustering measures (Goldfeld et al., 2018). Moreover, this discretization
depends on the chosen bin size and does not track the mutual information across varying
bin sizes Goldfeld et al. (2018); Ross (2014). To address these limitations, researchers have
proposed alternative approaches such as interpreting binned information as a weight decay
penalty Elad et al. (2019b), estimating mutual information based on lower bounds assuming
a continuous input distribution without making assumptions about the network’s output
distribution properties (Shwartz-Ziv et al., 2022a; Wang and Isola, 2020; Zimmermann et al.,
2021), injecting additive noise, and considering data augmentation as the source of noise
(Dubois et al., 2021; Goldfeld et al., 2018; Lee et al., 2021b; Shwartz-Ziv and Tishby, 2017).

Measuring Information in High-Dimensional Spaces

Estimating mutual information in high-dimensional spaces presents a significant challenge
when applying information-theoretic measures to real-world data. This problem has been
extensively studied (Gao et al., 2015; Paninski, 2003), revealing the inefficiency of solutions
for large dimensions and the limited scalability of known approximations with respect to
sample size and dimension. Despite these difficulties, various entropy and mutual information

21



estimation approaches have been developed, including classic methods like k-nearest neighbors
(KNN) (Kozachenko and Leonenko, 1987) and kernel density estimation techniques (Hang
et al., 2018), as well as more recent efficient methods.

Chelombiev et al. (2019) developed adaptive mutual information estimators based on
entropies-equal bins and scaled noise kernel density estimator. Generative decoder networks,
such as PixelCNN++ (Van den Oord et al., 2016), have been employed to estimate a lower
bound on mutual information (Darlow and Storkey, 2020; Nash et al., 2018; Shwartz-Ziv
et al., 2023). Another strategy includes ensemble dependency graph estimators, adaptive
mutual information estimation methods (EDGE) by merging randomized locality-sensitive
hashing (LSH), dependency graphs, and ensemble bias reduction techniques (Noshad and
Hero III, 2018). The Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018a)
maximizes KL divergence using the dual representation of Donsker and Varadhan (1975) and
has been employed for direct mutual information estimation (Elad et al., 2019a). Shwartz-Ziv
and Alemi (2020) developed a controlled framework that utilized the neural tangent kernels
(Jacot et al., 2018), in order to obtain tractable information measures.

Improving mutual information estimation can be achieved by using larger batch sizes, al-
though this may negatively impact generalization performance and memory requirements.
Alternatively, researchers have suggested employing surrogate measures for mutual informa-
tion, such as log-determinant mutual information (LDMI), based on second-order statistics
(Erdogan, 2022; Ozsoy et al., 2022), which reflects linear dependence. Goldfeld and Gree-
newald (2021) proposed the Sliced Mutual Information (SMI), defined as an average of
MI terms between one-dimensional projections of high-dimensional variables. SMI inherits
many properties of its classic counterpart and can be estimated with optimal parametric
error rates in all dimensions by combining an MI estimator between scalar variables with
an MC integrator (Goldfeld and Greenewald, 2021). The k-SMI, introduced by Goldfeld
et al. (2022), extends the SMI by projecting to k-dimensional subspace, which relaxes the
smoothness assumptions, improves scalability, and enhances performance.

In conclusion, estimating and optimizing information in deep neural networks presents
significant challenges, particularly in deterministic networks and high-dimensional spaces.
Researchers have proposed various approaches to address these issues, including discretization,
alternative estimators, and surrogate measures. As the field continues to evolve, it is expected
that more advanced techniques will emerge to overcome these challenges and facilitate the
understanding and optimization of deep learning models.

6. Future Research Directions

Despite the solid foundation established by existing self-supervised learning methods from an
information theory perspective, there are several potential research directions that warrant
exploration:

Self-supervised learning with non-shared information. As discussed in Section 4,
the separation of relevant (preserved) and irrelevant (compressed) information relies on
the Multiview Assumption. This assumption, which states that only shared information is
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essential for downstream tasks, is rather restrictive. For example, situations may arise where
each view contains distinct information relevant to a downstream task, or multiple tasks
necessitate different features. Some methods have been proposed to tackle this problem, but
they mainly focus on maximizing the network’s information without explicit constraints.
Formalizing this scenario and exploring how to differentiate between relevant and irrelevant
data based on non-shared information represents an intriguing research direction.

Self-supervised learning for tabular data. At present, the internal compression of
self-supervised learning methods may compress relevant information due to improper aug-
mentation 4.1. As a consequence, we must heavily rely on the process of generating the
two views, which must accurately represent information related to the downstream process.
Custom augmentation must be developed for each domain, taking into account extensive
prior knowledge on data augmentation. While some papers have attempted to extend self-
supervised learning to tabular data (Arik and Pfister, 2021; Ucar et al., 2021), further work is
necessary from both theoretical and practical standpoints to achieve high performance with
self-supervised learning for tabular data (Shwartz-Ziv and Armon, 2022). The augmentation
process is crucial for the performance of current vision and text models. In the case of
tabular data, employing information-theoretic loss functions that do not require information
compression may help harness the benefits of self-supervised learning.

Integrating other learning methods into the information-theoretic framework.
Prior works have investigated various supervised, unsupervised, semi-supervised, and self-
supervised learning methods, demonstrating that they optimize information-theoretic quanti-
ties. However, state-of-the-art methods employ additional changes and engineering practices
that may be related to information theory, such as the stop gradient operation utilized by
many self-supervised learning methods today (Chen and He, 2021; Grill et al., 2020). The
Expectation-Maximization (EM) algorithm (Dempster et al., 1977) can be employed to
explain this operation when one path is the E-step and the other is the M-step. Additionally,
Elidan and Friedman (2012) proposed an IB-inspired version of the EM, which could help
develop information-theoretic-based objectives using the stop gradient operation.

Expanding the analysis to usable information. While information theory offers a
rigorous conceptual framework for describing information, it neglects essential aspects of
computation. (Conditional) entropy, for example, is directly related to the predictability
of a random variable in a betting game where agents are rewarded for accurate guesses.
However, the standard definition assumes that agents have no computational bounds and
can employ arbitrarily complex prediction schemes (Cover, 1999). In the context of deep
learning, predictive information H(Y |Z) measures the amount of information that can be
extracted from Z about Y given access to all decoders p(y|z) in the world. Recently, Xu
et al. (2020) introduced predictive V-information as an alternative formulation based on
realistic computational constraints.

Extending self-supervised learning’s information-based perspective to energy-
based model optimization. Until now, research combining self-supervised learning with
information theory has focused on probabilistic models with tractable likelihoods. These
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models enable specific optimization of model parameters concerning the tractable log-
likelihood (Dinh et al., 2016; Germain et al., 2015; Graves, 2013; Rezende and Mohamed,
2015) or a tractable lower bound of the likelihood (Alemi et al., 2016; Kingma and Welling,
2019). Although models with tractable likelihoods offer certain benefits, their scope is
limited and necessitates a particular format. Energy-based models (EBMs) present a more
flexible, unified framework. Rather than specifying a normalized probability, EBMs define
inference as minimizing an unnormalized energy function and learning as minimizing a loss
function. The energy function does not require integration and can be parameterized with any
nonlinear regression function. Inference typically involves finding a low-energy configuration
or sampling from all possible configurations such that the probability of selecting a specific
configuration follows a Gibbs distribution (Huembeli et al., 2022; Song and Kingma, 2021).

Investigating energy-based models for self-supervised learning from both theoretical and
practical perspectives can open up numerous promising research directions. For instance, we
could directly apply tools developed for energy-based models and statistical machines to
optimize the model, such as Maximum Likelihood Training with MCMC (Younes, 1999),
score matching (Hyvärinen, 2006), denoising score matching (Song et al., 2020; Vincent,
2011), and score-based generation models (Song and Ermon, 2019).

Expanding the multiview framework to accommodate more views and tasks.
The multiview self-supervised IB framework can be extended to cases involving more than
two views (X1, · · · , Xn) and multiple downstream tasks (Y1, · · · , YK). A simple extension of
the multiview IB framework can be achieved by setting the objective function to maximize
the joint mutual information of all views’ representations I(Z1; · · ·Zn) and compressing the
individual information for each view I(Xi;Zi), 1 ≤ i ≤ N However, to ensure the optimality
of this objective, we must expand the multiview assumption to include more than two views.
In this scenario, we need to assume that relevant information is shared among all different
views and tasks, which might be overly restrictive. As a result, defining and analyzing a
more refined version of this naive solution is essential. One potential approach involves
utilizing the Multi-feature Information Bottleneck (MfIB) (Lou et al., 2013), which extends
the original IB. The MfIB processes multiple feature types simultaneously and analyzes
data from various sources. This framework establishes a joint distribution between the
multivariate data and the model. Rather than solely preserving the information of one feature
variable maximally, the MfIB concurrently maintains multiple feature variables’ information
while compressing them. The MfIB characterizes the relationships between different sources
and outputs by employing the multivariate Information Bottleneck (Friedman et al., 2013)
and setting Bayesian networks.

7. Conclusion

In this paper, we delved into the concept of optimal representation in self-supervised
learning from an information theory perspective. We reviewed various approaches to the
problem, emphasizing their assumptions and limitations, and integrated them into a cohesive
framework. Additionally, we discussed several information-theoretic terms influencing
optimal representation and methods for estimating them.
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Despite existing challenges in defining and optimizing optimal representation in self-supervised
learning, information theory furnishes a robust and versatile framework for analysis and
algorithm development. It presents a flexible methodology applicable to a diverse array of
learning models and facilitates understanding the implicit and explicit assumptions of data
and model optimization.

Promising future research directions encompass expanding the multiview framework to
accommodate more views and tasks, investigating energy-based models for self-supervised
learning, and exploring information theory’s role in other deep learning aspects, such as
reinforcement learning and generative models.

In conclusion, information theory serves as a valuable resource for developing and compre-
hending self-supervised learning models. Employing information theory enables us to enhance
our understanding of deep neural network learning processes and, ultimately, construct more
effective models.

In this paper, we investigated the concept of optimal representation in self-supervised learning
from an information theory perspective. We analyzed various approaches, highlighting
their assumptions and limitations, and integrated them into a unified, comprehensive
framework. Furthermore, we discussed several information-theoretic terms that influence
optimal representations and explored methods for estimating them.

In supervised and unsupervised learning, we have direct access to relevant information, en-
abling us to separate and compress irrelevant information. However, self-supervised learning
heavily relies on assumptions about the relationship between the data and downstream
tasks to define and compress irrelevant information. When these assumptions are violated,
separating information into relevant and irrelevant components becomes challenging, often
leading to suboptimal performance.

Despite the challenges in defining and optimizing optimal representation in self-supervised
learning, information theory offers a robust and versatile framework for analysis and algorithm
development. This framework is applicable to a wide array of learning models and contributes
to understanding the implicit and explicit assumptions of data and model optimization.

As datasets continue to grow in size and models are increasingly expected to serve as base
models for various downstream tasks, reliance on the Multi-view assumption becomes less
appropriate. Consequently, one of the most significant challenges in self-supervised learning
is compressing irrelevant information when this assumption does not hold. Identifying new
methods to separate relevant from irrelevant information based on alternative assumptions
presents a promising avenue for research.

Moreover, potential future research directions include expanding the Multi-view framework
to accommodate additional views and tasks, investigating energy-based models for self-
supervised learning, and exploring the role of information theory in other deep learning
aspects, such as reinforcement learning and generative models.

In conclusion, information theory serves as an invaluable resource for developing and
understanding self-supervised learning models. By leveraging information theory, we can
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enhance our comprehension of deep neural network learning processes and ultimately
construct more effective models which depend on our assumptions.
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