
J Stat Phys (2017) 168:1223–1247
DOI 10.1007/s10955-017-1836-5

Why Does Deep and Cheap Learning Work So Well?

Henry W. Lin1 · Max Tegmark2 · David Rolnick3

Received: 3 December 2016 / Accepted: 27 June 2017 / Published online: 21 July 2017
© Springer Science+Business Media, LLC 2017

Abstract We show how the success of deep learning could depend not only on mathematics
but also on physics: although well-known mathematical theorems guarantee that neural net-
works can approximate arbitrary functions well, the class of functions of practical interest
can frequently be approximated through “cheap learning” with exponentially fewer param-
eters than generic ones. We explore how properties frequently encountered in physics such
as symmetry, locality, compositionality, and polynomial log-probability translate into excep-
tionally simple neural networks.We further argue that when the statistical process generating
the data is of a certain hierarchical form prevalent in physics and machine learning, a deep
neural network can be more efficient than a shallow one. We formalize these claims using
information theory and discuss the relation to the renormalization group. We prove various
“no-flattening theorems” showing when efficient linear deep networks cannot be accurately
approximated by shallow ones without efficiency loss; for example, we show that n variables
cannot be multiplied using fewer than 2n neurons in a single hidden layer.

Keywords Artificial neural networks · Deep learning · Statistical physics

1 Introduction

Deep learning works remarkably well, and has helped dramatically improve the state-of-
the-art in areas ranging from speech recognition, translation and visual object recognition
to drug discovery, genomics and automatic game playing [1,2]. However, it is still not fully
understood why deep learning works so well. In contrast to GOFAI (“good old-fashioned
AI”) algorithms that are hand-crafted and fully understood analytically, many algorithms

B Henry W. Lin
henrylin@college.harvard.edu

1 Department of Physics, Harvard University, Cambridge, MA 02138, USA

2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-017-1836-5&domain=pdf


1224 H. W. Lin et al.

using artificial neural networks are understood only at a heuristic level, where we empiri-
cally know that certain training protocols employing large data sets will result in excellent
performance. This is reminiscent of the situation with human brains: we know that if we train
a child according to a certain curriculum, she will learn certain skills—but we lack a deep
understanding of how her brain accomplishes this.

This makes it timely and interesting to develop new analytic insights on deep learning
and its successes, which is the goal of the present paper. Such improved understanding is not
only interesting in its own right, and for potentially providing new clues about how brains
work, but it may also have practical applications. Better understanding the shortcomings of
deep learning may suggest ways of improving it, both to make it more capable and to make
it more robust [3].

1.1 The Swindle: Why Does “Cheap Learning” Work?

Throughout this paper, we will adopt a physics perspective on the problem, to prevent
application-specific details from obscuring simple general results related to dynamics, sym-
metries, renormalization, etc, and to exploit useful similarities between deep learning and
statistical mechanics.

The task of approximating functions of many variables is central to most applications
of machine learning, including unsupervised learning, classification and prediction, as illus-
trated in Fig. 1. For example, if we are interested in classifying faces, then we may want our
neural network to implement a function where we feed in an image represented by a million
greyscale pixels and get as output the probability distribution over a set of people that the
image might represent.

When investigating the quality of a neural net, there are several important factors to
consider:

Unsupervised
learning

Prediction Classification

p(x,y)

p(y |x)p(x |y)

Fig. 1 In this paper,we follow themachine learning convention that x refers to data (e.g., an image) and y refers
to underlying information about that data (such as a label for the image).Neural networks canbeused to estimate
(or sample from) probability distributions with respect to x and y, given many samples. Classification involves
approximating the probability distribution of y given x, in the case that y is discrete-valued. This problem
may also be called prediction, e.g. when x is earlier data in a time series. Generation involves approximating
the probability distribution for x given y, or drawing samples from this distribution. Unsupervised learning
attempts to approximate or model the probability distribution of x, without any knowledge of y

123



Why Does Deep and Cheap… 1225

• Expressibility: What class of functions can the neural network express?
• Efficiency: How many resources (neurons, parameters, etc) does the neural network

require to approximate a given function?
• Learnability: How rapidly can the neural network learn good parameters for approximat-

ing a function?

This paper is focused on expressibility and efficiency, and more specifically on the fol-
lowing well-known [4–6] problem: How can neural networks approximate functions well
in practice, when the set of possible functions is exponentially larger than the set of practi-
cally possible networks? For example, suppose that we wish to classify megapixel greyscale
images into two categories, e.g., cats or dogs. If each pixel can take one of 256 values, then
there are 2561000,000 possible images, and for each one, we wish to compute the probability
that it depicts a cat. This means that an arbitrary function is defined by a list of 2561000,000

probabilities, i.e., way more numbers than there are atoms in our universe (about 1078).
Yet neural networks with merely thousands or millions of parameters somehow manage

to perform such classification tasks quite well. How can deep learning be so “cheap”, in the
sense of requiring so few parameters?

We will see in below that neural networks perform a combinatorial swindle, replacing
exponentiation by multiplication: if there are say n = 106 inputs taking v = 256 values
each, this swindle cuts the number of parameters from vn to v × n times some constant
factor. We will show that this success of this swindle depends fundamentally on physics:
although neural networks only work well for an exponentially tiny fraction of all possible
inputs, the laws of physics are such that the data sets we care about for machine learning
(natural images, sounds, drawings, text, etc) are also drawn froman exponentially tiny fraction
of all imaginable data sets. Moreover, we will see that these two tiny subsets are remarkably
similar, enabling deep learning to work well in practice.

The rest of this paper is organized as follows. In Sect. 2, we present results for shallow
neural networks with merely a handful of layers, focusing on simplifications due to locality,
symmetry and polynomials. In Sect. 3, we study how increasing the depth of a neural network
can provide polynomial or exponential efficiency gains even though it adds nothing in terms
of expressivity, and we discuss the connections to renormalization, compositionality and
complexity. We summarize our conclusions in Sect. 4.

2 Expressibility and Efficiency of Shallow Neural Networks

Let us now explore what classes of probability distributions p are the focus of physics and
machine learning, and how accurately and efficiently neural networks can approximate them.
We will be interested in probability distributions p(x|y), where x ranges over some sample
space and y will be interpreted either as another variable being conditioned on or as a model
parameter. For a machine learning example, we might interpret y as an element of some set
of animals {cat, dog, rabbit, . . .} and x as the vector of pixels in an image depicting such
an animal, so that p(x|y) for y = cat gives the probability distribution of images of cats
with different coloring, size, posture, viewing angle, lighting condition, electronic camera
noise, etc For a physics example, we might interpret y as an element of some set of metals
{iron, aluminum, copper, . . .} and x as the vector of magnetization values for different parts
of a metal bar. The prediction problem is then to evaluate p(x|y), whereas the classification
problem is to evaluate p(y|x).

Because of the above-mentioned “swindle”, accurate approximations are only possible
for a tiny subclass of all probability distributions. Fortunately, as we will explore below,

123



1226 H. W. Lin et al.

the function p(x|y) often has many simplifying features enabling accurate approximation,
because it follows from some simple physical law or some generative model with relatively
few free parameters: for example, its dependence on x may exhibit symmetry, locality and/or
be of a simple form such as the exponential of a low-order polynomial. In contrast, the
dependence of p(y|x) on y tends to be more complicated; it makes no sense to speak of
symmetries or polynomials involving a variable y = cat .

Let us therefore start by tackling the more complicated case of modeling p(y|x). This
probability distribution p(y|x) is determined by the hopefully simpler function p(x|y) via
Bayes’ theorem:

p(y|x) = p(x|y)p(y)
∑

y′ p(x|y′)(y′)
, (1)

where p(y) is the probability distribution over y (animals or metals, say) a priori, before
examining the data vector x.

2.1 Probabilities and Hamiltonians

It is useful to introduce the negative logarithms of two of these probabilities:

Hy(x) ≡ − ln p(x|y),
μy ≡ − ln p(y). (2)

Table 1 is a brief dictionary translating between physics and machine-learning terminology.
Statisticians refer to − ln p as “self-information” or “surprisal”, and statistical physicists

refer to Hy(x) as the Hamiltonian, quantifying the energy of x (up to an arbitrary and irrel-
evant additive constant) given the parameter y. These definitions transform Eq. (1) into the
Boltzmann form

p(y|x) = 1

N (x)
e−[Hy(x)+μx ], (3)

where
N (x) ≡

∑

y

e−[Hy(x)+μy ]. (4)

Table 1 Physics-ML dictionary

Physics Machine learning

Hamiltonian Surprisal − ln p

Simple H Cheap learning

Quadratic H Gaussian p

Locality Sparsity

Translationally symmetric H Convnet

Computing p from H Softmaxing

Spin Bit

Free energy difference KL-divergence

Effective theory Nearly lossless data distillation

Irrelevant operator Noise

Relevant operator Feature

123



Why Does Deep and Cheap… 1227

This recasting of Eq. (1) is useful because the Hamiltonian tends to have properties making
it simple to evaluate. We will see in Sect. 3 that it also helps understand the relation between
deep learning and renormalization [7].

2.2 Bayes’ Theorem as a Softmax

Since the variable y takes one of a discrete set of values, we will often write it as an index
instead of as an argument, as py(x) ≡ p(y|x). Moreover, we will often find it convenient to
view all values indexed by y as elements of a vector, written in boldface, thus viewing py ,
Hy and μy as elements of the vectors p, H and μ, respectively. Equation (3) thus simplifies
to

p(x) = 1

N (x)
e−[H(x)+μ], (5)

using the standard convention that a function (in this case exp) applied to a vector acts on its
elements.

We wish to investigate how well this vector-valued function p(x) can be approximated
by a neural net. A standard n-layer feedforward neural network maps vectors to vectors
by applying a series of linear and nonlinear transformations in succession. Specifically, it
implements vector-valued functions of the form [1]

f(x) = σ nAn · · · σ 2A2σ 1A1x, (6)

where the σ i are relatively simple nonlinear operators on vectors and the Ai are affine
transformations of the form Aix = Wix + bi for matrices Wi and so-called bias vectors bi .
Popular choices for these nonlinear operators σ i include

• Local function apply some nonlinear function σ to each vector element,
• Max-pooling compute the maximum of all vector elements,
• Softmax exponentiate all vector elements and normalize them to so sum to unity

σ̃ (x) ≡ ex
∑

i e
yi

. (7)

(We use σ̃ to indicate the softmax function and σ to indicate an arbitrary non-linearity,
optionally with certain regularity requirements).

This allows us to rewrite Eq. (5) as

p(x) = σ̃ [−H(x) − μ]. (8)

This means that if we can compute the Hamiltonian vector H(x) with some n-layer neural
net, we can evaluate the desired classification probability vector p(x) by simply adding a
softmax layer. The μ-vector simply becomes the bias term in this final layer.

2.3 What Hamiltonians can be Approximated by Feasible Neural Networks?

It has long been known that neural networks are universal1 approximators [8,9], in the sense
that networks with virtually all popular nonlinear activation functions σ(x) can approximate
any smooth function to any desired accuracy—even using merely a single hidden layer.

1 Neurons are universal analog computing modules in much the same way that NAND gates are universal
digital computingmodules: any computable function can be accurately evaluated by a sufficiently large network
of them. Just as NAND gates are not unique (NOR gates are also universal), nor is any particular neuron
implementation—indeed, any generic smooth nonlinear activation function is universal [8,9].

123



1228 H. W. Lin et al.

However, these theorems do not guarantee that this can be accomplished with a network of
feasible size, and the following simple example explains why they cannot: There are 22

n

different Boolean functions of n variables, so a network implementing a generic function
in this class requires at least 2n bits to describe, i.e., more bits than there are atoms in our
universe if n > 260.

The fact that neural networks of feasible size are nonetheless so useful therefore implies
that the class of functions we care about approximating is dramatically smaller. We will see
below in Sect. 2.4 that both physics and machine learning tend to favor Hamiltonians that are
polynomials2—indeed, often ones that are sparse, symmetric and low-order. Let us therefore
focus our initial investigation on Hamiltonians that can be expanded as a power series:

Hy(x) = h +
∑

i

hi xi +
∑

i≤ j

hi j xi x j +
∑

i≤ j≤k

hi jk xi x j xk + · · · . (9)

If the vector x has n components (i = 1, . . . , n), then there are (n + d)!/(n!d!) terms of
degree up to d .

2.3.1 Continuous Input Variables

If we can accurately approximate multiplication using a small number of neurons, then
we can construct a network efficiently approximating any polynomial Hy(x) by repeated
multiplication and addition. We will now see that we can, using any smooth but otherwise
arbitrary non-linearity σ that is applied element-wise. The popular logistic sigmoid activation
function σ(x) = 1/(1 + e−x ) will do the trick.

Theorem 1 Let f be a neural network of the form f = A2σA1, where σ acts elementwise by
applying some smooth non-linear function σ to each element. Let the input layer, hidden layer
and output layer have sizes 2, 4 and 1, respectively. Then f can approximate a multiplication
gate arbitrarily well.

To see this, let us first Taylor-expand the function σ around the origin:

σ(u) = σ0 + σ1u + σ2
u2

2
+ O(u3). (10)

Without loss of generality, we can assume that σ2 �= 0: since σ is non-linear, it must have a
non-zero second derivative at some point, so we can use the biases in A1 to shift the origin
to this point to ensure σ2 �= 0. Equation (10) now implies that

m(u, v) ≡ σ(u + v) + σ(−u − v) − σ(u − v) − σ(−u + v)

4σ2
= uv

[
1 + O (

u2 + v2
)]

, (11)

where we will term m(u, v) the multiplication approximator. Taylor’s theorem guarantees
that m(u, v) is an arbitrarily good approximation of uv for arbitrarily small |u| and |v|.
However, we can always make |u| and |v| arbitrarily small by scaling A1 → λA1 and

2 The class of functions that can be exactly expressed by a neural networkmust be invariant under composition,
since adding more layers corresponds to using the output of one function as the input to another. Important
such classes include linear functions, affine functions, piecewise linear functions (generated by the popular
Rectified Linear unit “ReLU” activation function σ(x) = max[0, x]), polynomials, continuous functions and
smooth functions whose nth derivatives are continuous. According to the Stone-Weierstrass theorem, both
polynomials and piecewise linear functions can approximate continuous functions arbitrarily well.

123



Why Does Deep and Cheap… 1229

u v

uv
Continuous multiplication gate:

w 1u v

uvw
Binary multiplication gate:

1

-2

Fig. 2 Multiplication can be efficiently implemented by simple neural nets, becoming arbitrarily accurate as
λ → 0 (left) and β → ∞ (right). Squares apply the function σ , circles perform summation, and lines multiply
by the constants labeling them. The “1” input implements the bias term. The left gate requires σ ′′(0) �= 0,
which can always be arranged by biasing the input to σ . The right gate requires the sigmoidal behavior
σ(x) → 0 and σ(x) → 1 as x → −∞ and x → ∞, respectively

then compensating by scaling A2 → λ−2A2. In the limit that λ → ∞, this approximation
becomes exact.3 In other words, arbitrarily accurate multiplication can always be achieved
using merely 4 neurons. Figure 2 illustrates such a multiplication approximator. (Of course, a
practical algorithm like stochastic gradient descent cannot achieve arbitrarily large weights,
though a reasonably good approximation can be achieved already for λ−1 ∼ 10.)

Corollary 1 For any given multivariate polynomial and any tolerance ε > 0, there exists
a neural network of fixed finite size N (independent of ε) that approximates the polynomial
to accuracy better than ε. Furthermore, N is bounded by the complexity of the polynomial,
scaling as the number of multiplications required times a factor that is typically slightly
larger than 4.4

This is a stronger statement than the classic universal universal approximation theorems
for neural networks [8,9], which guarantee that for every ε there exists some N (ε), but allows
for the possibility that N (ε) → ∞ as ε → 0. An approximation theorem in [10] provides
an ε-independent bound on the size of the neural network, but at the price of choosing a
pathological function σ .

2.3.2 Discrete Input Variables

For the simple but important case where x is a vector of bits, so that xi = 0 or xi = 1, the
fact that x2i = xi makes things even simpler. This means that only terms where all variables

3 The limit where λ → ∞ but |A1|2|A2| is held constant is very similar in spirit to the ’t Hooft limit in large
N quantum field theories where g2N is held fixed but N → ∞. The extra terms in the Taylor series which are
suppressed at large λ are analogous to the suppression of certain Feynman diagrams at large N . The authors
thank Daniel Roberts for pointing this out.
4 In addition to the four neurons required for each multiplication, additional neurons may be deployed to copy
variables to higher layers bypassing the nonlinearity in σ . Such linear “copy gates” implementing the function
u → u are of course trivial to implement using a simpler version of the above procedure: using A1 to shift and
scale down the input to fall in a tiny range where σ ′(u) �= 0, and then scaling it up and shifting accordingly
with A2.

123



1230 H. W. Lin et al.

are different need be included, which simplifies Eq. (9) to

Hy(x) = h +
∑

i

hi xi +
∑

i< j

hi j xi y j +
∑

i< j<k

hi jk xi x j xk + · · · . (12)

The infinite series Eq. (9) thus gets replaced by a finite series with 2n terms, ending with the
term h1...nx1 · · · xn . Since there are 2n possible bit strings x, the 2n h−parameters in Eq. (12)
suffice to exactly parametrize an arbitrary function Hy(x).

The efficient multiplication approximator above multiplied only two variables at a time,
thus requiring multiple layers to evaluate general polynomials. In contrast, H(x) for a bit
vector x can be implemented using merely three layers as illustrated in Fig. 2, where the
middle layer evaluates the bit products and the third layer takes a linear combination of them.
This is because bits allow an accurate multiplication approximator that takes the product
of an arbitrary number of bits at once, exploiting the fact that a product of bits can be
trivially determined from their sum: for example, the product x1x2x3 = 1 if and only if
the sum x1 + x2 + x3 = 3. This sum-checking can be implemented using one of the most
popular choices for a nonlinear function σ : the logistic sigmoid σ(x) = 1

1+e−x which satisfies
σ(x) ≈ 0 for x 
 0 and σ(x) ≈ 1 for x � 1. To compute the product of some set of k bits
described by the set K (for our example above, K = {1, 2, 3}), we let A1 and A2 shift and
stretch the sigmoid to exploit the identity

∏

i∈K
xi = lim

β→∞ σ

[

−β

(

k − 1

2
−

∑

x∈K
xi

)]

. (13)

Since σ decays exponentially fast toward 0 or 1 as β is increased, modestly large β-values
suffice in practice; if, for example, we want the correct answer to D = 10 decimal places,
we merely need β > D ln 10 ≈ 23. In summary, when x is a bit string, an arbitrary function
py(x) can be evaluated by a simple 3-layer neural network: the middle layer uses sigmoid
functions to compute the products from Eq. (12), and the top layer performs the sums from
Eq. (12) and the softmax from Eq. (8).

2.4 What Hamiltonians Do We Want to Approximate?

We have seen that polynomials can be accurately approximated by neural networks using a
number of neurons scaling either as the number ofmultiplications required (for the continuous
case) or as the number of terms (for the binary case). But polynomials per se are no panacea:
with binary input, all functions are polynomials, and with continuous input, there are (n +
d)!/(n!d!) coefficients in a generic polynomial of degree d in n variables, which easily
becomes unmanageably large. We will now discuss situations in which exceptionally simple
polynomials that are sparse, symmetric and/or low-order play a special role in physics and
machine learning.

2.4.1 Low Polynomial Order

The Hamiltonians that show up in physics are not random functions, but tend to be poly-
nomials of very low order, typically of degree ranging from 2 to 4. The simplest example
is of course the harmonic oscillator, which is described by a Hamiltonian that is quadratic
in both position and momentum. There are many reasons why low order polynomials show
up in physics. Two of the most important ones are that sometimes a phenomenon can be
studied perturbatively, in which case, Taylor’s theorem suggests that we can get away with
a low order polynomial approximation. A second reason is renormalization: higher order

123



Why Does Deep and Cheap… 1231

terms in the Hamiltonian of a statistical field theory tend to be negligible if we only observe
macroscopic variables.

At a fundamental level, the Hamiltonian of the standard model of particle physics has
d = 4. There aremany approximations of this quarticHamiltonian that are accurate in specific
regimes, for example theMaxwell equations governing electromagnetism, the Navier-Stokes
equations governing fluid dynamics, the Alvén equations governing magnetohydrodynam-
ics and various Ising models governing magnetization—all of these approximations have
Hamiltonians that are polynomials in the field variables, of degree d ranging from 2 to 4.

This means that the number of polynomial coefficients in many examples is not infinite
as in Eq. (9) or exponential in n as in Eq. (12), merely of order O(n4).

There are additional reasons why we might expect low order polynomials. Thanks to the
Central Limit Theorem [11], many probability distributions inmachine learning and statistics
can be accurately approximated by multivariate Gaussians, i.e., of the form

p(x) = eh+∑
i h j xi−∑

i j hi j xi x j , (14)

which means that the Hamiltonian H = − ln p is a quadratic polynomial. More generally,
the maximum-entropy probability distribution subject to constraints on some of the lowest
moments, say expectation values of the form 〈xα1

1 xα2
2 · · · xαn

n 〉 for some integers αi ≥ 0would
lead to a Hamiltonian of degree no greater than d ≡ ∑

i αi [12].
Image classification tasks often exploit invariance under translation, rotation, and various

nonlinear deformations of the image plane that move pixels to new locations. All such spatial
transformations are linear functions (d = 1 polynomials) of the pixel vector x. Functions
implementing convolutions and Fourier transforms are also d = 1 polynomials.

Of course, such arguments donot imply thatwe should expect to see low-order polynomials
in every application. If we consider some data set generated by a very simple Hamiltonian
(say the Ising Hamiltonian), but then discard some of the random variables, the resulting
marginalized distribution can become quite complicated and of high order. Similarly, if we do
not observe the random variables directly, but observe some generic functions of the random
variables, the result will generally be a mess. These arguments, however, might indicate that
the probability of encountering a Hamiltonian described by a low-order polynomial in some
application might be significantly higher than what one might expect from some naive prior.
For example, a uniform prior on the space of all polynomials of degree N would suggest that
a randomly chosen polynomial would almost always have degree N , but this might be a bad
prior for real-world applications.

We should also note that even if a Hamiltonian is described exactly by a low-order poly-
nomial, we would not expect the corresponding neural network to reproduce a low-order
polynomial Hamiltonian exactly in any practical scenario for a host of possible reasons
including limited data, the requirement of infinite weights for infinite accuracy, and the fail-
ure of practical algorithms such as stochastic gradient descent to find the global minimum
of a cost function in many scenarios. So looking at the weights of a neural network trained
on actual data may not be a good indicator of whether or not the underlying Hamiltonian is
a polynomial of low degree or not.

2.4.2 Locality

One of the deepest principles of physics is locality: that things directly affect only what is in
their immediate vicinity. When physical systems are simulated on a computer by discretizing
space onto a rectangular lattice, locality manifests itself by allowing only nearest-neighbor

123



1232 H. W. Lin et al.

interaction. In other words, almost all coefficients in Eq. (9) are forced to vanish, and the total
number of non-zero coefficients grows only linearly with n. For the binary case of Eq. (9),
which applies to magnetizations (spins) that can take one of two values, locality also limits
the degree d to be no greater than the number of neighbors that a given spin is coupled to
(since all variables in a polynomial term must be different).

Again, the applicability of these considerations to particular machine learning applica-
tions must be determined on a case by case basis. Certainly, an arbitrary transformation of
a collection of local random variables will result in a non-local collection. (This might ruin
locality in certain ensembles of images, for example). But there are certainly cases in physics
where locality is still approximately preserved, for example in the simple block-spin renor-
malization group, spins are grouped into blocks, which are then treated as random variables.
To a high degree of accuracy, these blocks are only coupled to their nearest neighbors. Such
locality is famously exploited by both biological and artificial visual systems, whose first
neuronal layer performs merely fairly local operations.

2.4.3 Symmetry

Whenever the Hamiltonian obeys some symmetry (is invariant under some transformation),
the number of independent parameters required to describe it is further reduced. For instance,
many probability distributions in both physics and machine learning are invariant under
translation and rotation. As an example, consider a vector x of air pressures yi measured
by a microphone at times i = 1, . . . , n. Assuming that the Hamiltonian describing it has
d = 2 reduces the number of parameters N from ∞ to (n + 1)(n + 2)/2. Further assuming
locality (nearest-neighbor couplings only) reduces this to N = 2n, after which requiring
translational symmetry reduces the parameter count to N = 3. Taken together, the constraints
on locality, symmetry and polynomial order reduce the number of continuous parameters in
the Hamiltonian of the standard model of physics to merely 32 [13]. Naturally, this does
not mean that modeling a real physical system requires merely 32 parameters - the objects
involved must be modeled also; there too, however, symmetry allows us to abstract away
from the information contained in individual particles to that summarizing components of
the system.

Symmetry can reduce not merely the parameter count, but also the computational com-
plexity. For example, if a linear vector-valued function f(x)mapping a set of n variables onto
itself happens to satisfy translational symmetry, then it is a convolution (implementable by
a convolutional neural net; “convnet”), which means that it can be computed with n log2 n
rather than n2 multiplications using Fast Fourier transform.

3 Why Deep?

Above we investigated how probability distributions from physics and computer science
applications lent themselves to “cheap learning”, being accurately and efficiently approxi-
mated by neural networks with merely a handful of layers. Let us now turn to the separate
question of depth, i.e., the success of deep learning: what properties of real-world probability
distributions cause efficiency to further improve when networks are made deeper? This ques-
tion has been extensively studied from amathematical point of view [14–16], butmathematics
alone cannot fully answer it, because part of the answer involves physics. We will argue that
the answer involves the hierarchical/compositional structure of generative processes together
with inability to efficiently “flatten” neural networks reflecting this structure.

123



Why Does Deep and Cheap… 1233

3.1 Hierarchical Processess

One of the most striking features of the physical world is its hierarchical structure. Spatially,
it is an object hierarchy: elementary particles form atomswhich in turn formmolecules, cells,
organisms, planets, solar systems, galaxies, etc Causally, complex structures are frequently
created through a distinct sequence of simpler steps.

Figure 3 gives two examples of such causal hierarchies generating data vectors y0 �→
y1 �→ . . . �→ yn that are relevant to physics and image classification, respectively. Both
examples involve a Markov chain5 where the probability distribution p(yi ) at the i th level of
the hierarchy is determined from its causal predecessor alone:

pi = Mipi−1, (15)

where the probability vector pi specifies the probability distribution of p(yi ) according to
(pi )y ≡ p(yi ) and the Markov matrix Mi specifies the transition probabilities between two
neighboring levels, p(yi |yi−1). Iterating Eq. (15) gives

pn = MnMn−1 · · · M1p0, (16)

so we can write the combined effect of the the entire generative process as a matrix product.
In our physics example (Fig. 3, left), a set of cosmological parameters y0 (the density of

dark matter, etc) determines the power spectrum y1 of density fluctuations in our universe,
which in turn determines the pattern of cosmic microwave background radiation y2 reaching
us from our early universe, which gets combined with foreground radio noise from our
Galaxy to produce the frequency-dependent sky maps (y3) that are recorded by a satellite-
based telescope thatmeasures linear combinations of different sky signals and adds electronic
receiver noise. For the recent example of the Planck Satellite [17], these datasets yi , y2, . . .
contained about 101, 104, 108, 109 and 1012 numbers, respectively.

More generally, if a given data set is generated by a (classical) statistical physics process,
it must be described by an equation in the form of Eq. (16), since dynamics in classical
physics is fundamentally Markovian: classical equations of motion are always first order
differential equations in the Hamiltonian formalism. This technically covers essentially all
data of interest in the machine learning community, although the fundamental Markovian
nature of the generative process of the data may be an in-efficient description.

Our toy image classification example (Fig. 3, right) is deliberately contrived and over-
simplified for pedagogy: y0 is a single bit signifying “cat or dog”, which determines a set of
parameters determining the animal’s coloration, body shape, posture, etc using approxiate
probability distributions, which determine a 2D image via ray-tracing, which is scaled and
translated by random amounts before a randomly generated background is added.

In both examples, the goal is to reverse this generative hierarchy to learn about the input
y ≡ y0 from the output yn ≡ x , specifically to provide the best possibile estimate of the
probability distribution p(y|y) = p(y0|yn)—i.e., to determine the probability distribution
for the cosmological parameters and to determine the probability that the image is a cat,
respectively.

5 If the next step in the generative hierarchy requires knowledge of not merely of the present state but also
information of the past, the present state can be redefined to include also this information, thus ensuring that
the generative process is a Markov process.

123



1234 H. W. Lin et al.

y0=y

y1

y2

y3

>y3=T3(x)

>y2=T2(x)
>y0=T0(x)

y4

M4

M1

M3

M2

>y1=T1(x)

x=y4

ad
d 

fo
re

gr
ou

nd
s

si
m

ul
at

e
sk

y 
m

ap
n, n , Q, T/ST

, hb 

Pixel 1     Pixel 2     T
6422347     6443428   -454.841
3141592     2718281    141.421
8454543     9345593    654.766
1004356     8345388   -305.567
  ...         ...        ...

TELESCOPE
DATA

CMB SKY
MAP

TRANSFORMED
OBJECT

RAY-TRACED
OBJECT

CATEGORY 
LABEL

FINAL IMAGE

SOLIDWORKS
PARAMTERS

POWER
SPECTRUM

COSMO-
LOGICAL
PARAMTERS

cat or dog?
ta

ke
 li

ne
ar

co
m

bi
na

tio
ns

,
ad

d 
no

is
e

ray trace
select background 

select color, 
shape &

 posture 

f 3
f 2

f 1
f 0

ge
ne

ra
te

flu
ct

ua
tio

ns
scale &

 translate

FREQUENCY
MAPS

param 1     param 2   param 3
6422347     6443428   -454.841
3141592     2718281    141.421
8454543     9345593    654.766
1004356     8345388   -305.567
  ...         ...        ...

y0=y

y1

y2

y3

y4

M4

M1

M3

M2

Fig. 3 Causal hierarchy examples relevant to physics (left) and image classification (right). As information
flows down the hierarchy y0 → y1 → . . . → yn = y, some of it is destroyed by random Markov processes.
However, no further information is lost as information flows optimally back up the hierarchy as ŷn−1 → . . . →
ŷ0. The right example is deliberately contrived and over-simplified for pedagogy; for example, translation and
scaling are more naturally performed before ray tracing, which in turn breaks down into multiple steps.

3.2 Resolving the Swindle

This decomposition of the generative process into a hierarchy of simpler steps helps resolve
the“swindle” paradox from the introduction: although the number of parameters required
to describe an arbitrary function of the input data y is beyond astronomical, the generative
process can be specified by a more modest number of parameters, because each of its steps
can. Whereas specifying an arbitrary probability distribution over multi-megapixel images
x requires far more bits than there are atoms in our universe, the information specifying
how to compute the probability distribution p(x |y) for a microwave background map fits
into a handful of published journal articles or software packages [18–24]. For a megapixel
image of a galaxy, its entire probability distribution is defined by the standard model of
particle physics with its 32 parameters [13], which together specify the process transforming
primordial hydrogen gas into galaxies.

123



Why Does Deep and Cheap… 1235

The same parameter-counting argument can also be applied to all artificial images of inter-
est to machine learning: for example, giving the simple low-information-content instruction
“draw a cute kitten” to a random sample of artists will produce a wide variety of images y
with a complicated probability distribution over colors, postures, etc, as each artist makes
random choices at a series of steps. Even the pre-stored information about cat probabilities
in these artists’ brains is modest in size.

Note that a random resulting image typically contains much more information than the
generative process creating it; for example, the simple instruction “generate a random string
of 109 bits” contains much fewer than 109 bits. Not only are the typical steps in the generative
hierarchy specified by a non-astronomical number of parameters, but as discussed in Sect.
2.4, it is plausible that neural networks can implement each of the steps efficiently.6

A deep neural network stacking these simpler networks on top of one another would then
implement the entire generative process efficiently. In summary, the data sets and functions
we care about form a minuscule minority, and it is plausible that they can also be efficiently
implemented by neural networks reflecting their generative process. Sowhat is the remainder?
Which are the data sets and functions that we do not care about?

Almost all images are indistinguishable from random noise, and almost all data sets and
functions are indistinguishable from completely random ones. This follows from Borel’s
theorem on normal numbers [26], which states that almost all real numbers have a string of
decimals that would pass any randomness test, i.e., are indistinguishable from random noise.
Simple parameter counting shows that deep learning (and our human brains, for that matter)
would fail to implement almost all such functions, and training would fail to find any useful
patterns. To thwart pattern-finding efforts. cryptography therefore aims to produces random-
looking patterns. Although we might expect the Hamiltonians describing human-generated
data sets such as drawings, text and music to be more complex than those describing simple
physical systems, we should nonetheless expect them to resemble the natural data sets that
inspired their creation much more than they resemble random functions.

3.3 Sufficient Statistics and Hierarchies

The goal of deep learning classifiers is to reverse the hierarchical generative process as well
as possible, to make inferences about the input y from the output x . Let us now treat this
hierarchical problem more rigorously using information theory.

Given P(y|x), a sufficient statistic T (x) is defined by the equation P(y|x) = P(y|T (x))
and has played an important role in statistics for almost a century [27]. All the information
about y contained in x is contained in the sufficient statistic. Aminimal sufficient statistic [27]
is some sufficient statistic T∗ which is a sufficient statistic for all other sufficient statistics.
This means that if T (y) is sufficient, then there exists some function f such that T∗(y) =
f (T (y)). As illustrated in Fig. 3, T∗ can be thought of as a an information distiller, optimally
compressing the data so as to retain all information relevant to determining y and discarding
all irrelevant information.

The sufficient statistic formalism enables us to state some simple but important results
that apply to any hierarchical generative process cast in the Markov chain form of Eq. (16).

Theorem 2 Given a Markov chain described by our notation above, let Ti be a minimal
sufficient statistic of P(yi |yn). Then there exists some functions fi such that Ti = fi ◦ Ti+1.

6 Although our discussion is focused on describing probability distributions, which are not random, stochastic
neural networks can generate random variables as well. In biology, spiking neurons provide a good random
number generator, and in machine learning, stochastic architectures such as restricted Boltzmann machines
[25] do the same.

123



1236 H. W. Lin et al.

More casually speaking, the generative hierarchy of Fig. 3 can be optimally reversed one
step at a time: there are functions fi that optimally undo each of the steps, distilling out all
information about the level above that was not destroyed by the Markov process. Here is
the proof. Note that for any k ≥ 1, the “backwards” Markov property P(yi |yi+1, yi+k) =
P(yi |yi+1) follows from the Markov property via Bayes’ theorem:

P(yi |yi+k, yi+1) = P(yi+k |yi , yi+1)P(yi |yi+1)

P(yi+k |yi+1)

= P(yi+k |yi+1)P(yi |yi+1)

P(yi+k |yi+1)

= P(yi |yi+1). (17)

Using this fact, we see that

P(yi |yn) =
∑

yi+1

P(yi |yi+1yn)P(yi+1|yn)

=
∑

yi+1

P(yi |yi+1)P(yi+1|Ti+1(yn)). (18)

Since the above equation depends on yn only through Ti+1(yn), this means that Ti+1 is a
sufficient statistic for P(yi |yn). But since Ti is the minimal sufficient statistic, there exists a
function fi such that Ti = fi ◦ Ti+1.

Corollary 2 With the same assumptions and notation as theorem 2, define the function
f0(T0) = P(y0|T0) and fn = Tn−1. Then

P(y0|yn) = ( f0 ◦ f1 ◦ · · · ◦ fn) (yn). (19)

The proof is easy. By induction,

T0 = f1 ◦ f2 ◦ · · · ◦ Tn−1, which implies the corollary. (20)

Roughly speaking, Corollary 2 states that the structure of the inference problem reflects the
structure of the generative process. In this case, we see that the neural network trying to
approximate P(y|x) must approximate a compositional function. We will argue below in
Sect. 3.6 that in many cases, this can only be accomplished efficiently if the neural network
has � n hidden layers.

In neuroscience parlance, the functions fi compress the data into forms with ever more
invariance [28], containing features invariant under irrelevant transformations (for example
background substitution, scaling and translation).

Let us denote the distilled vectors ŷi ≡ fi (ŷi+1), where ŷn ≡ y. As summarized by Fig.
3, as information flows down the hierarchy y = y0 → y1 → . . . exn = x, some of it is
destroyed by random processes. However, no further information is lost as information flows
optimally back up the hierarchy as y → ŷn−1 → · · · → ŷ0.

3.4 Approximate Information Distillation

Althoughminimal sufficient statistics are often difficult to calculate in practice, it is frequently
possible to come up with statistics which are nearly sufficient in a certain sense which we
now explain.

An equivalent characterization of a sufficient statistic is provided by information theory
[29,30]. The data processing inequality [30] states that for any function f and any random

123



Why Does Deep and Cheap… 1237

variables x, y,
I (x, y) ≥ I (x, f (y)), (21)

where I is the mutual information:

I (x, y) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (22)

A sufficient statistic T (x) is a function f (x) for which “≥” gets replaced by “=” in Eq. (21),
i.e., a function retaining all the information about y.

Even information distillation functions f that are not strictly sufficient can be very useful
as long as they distill out most of the relevant information and are computationally efficient.
For example, it may be possible to trade some loss of mutual information with a dramatic
reduction in the complexity of the Hamiltonian; e.g., Hy ( f (x)) may be considerably easier
to implement in a neural network than Hy (x). Precisely this situation applies to the physical
example described in Fig. 3, where a hierarchy of efficient near-perfect information distillers
fi have been found, the numerical cost of f3 [23,24], f2 [21,22], f1 [19,20] and f0 [17] scal-
ing with the number of inputs parameters n asO(n),O(n3/2),O(n2) andO(n3), respectively.
More abstractly, the procedure of renormalization, ubiquitous in statistical physics, can be
viewed as a special case of approximate information distillation, as we will now describe.

3.5 Distillation and Renormalization

The systematic framework for distilling out desired information from unwanted “noise” in
physical theories is known as Effective Field Theory [31]. Typically, the desired information
involves relatively large-scale features that can be experimentally measured, whereas the
noise involves unobserved microscopic scales. A key part of this framework is known as
the renormalization group (RG) transformation [31,32]. Although the connection between
RG and machine learning has been studied or alluded to repeatedly [7,33–36], there are
significant misconceptions in the literature concerning the connection which we will now
attempt to clear up.

Let us first review a standard working definition of what renormalization is in the context
of statistical physics, involving three ingredients: a vector y of random variables, a course-
graining operation R and a requirement that this operation leaves the Hamiltonian invariant
except for parameter changes.We think of y as themicroscopic degrees of freedom—typically
physical quantities defined at a lattice of points (pixels or voxels) in space. Its probability
distribution is specified by a Hamiltonian Hy(x), with some parameter vector y. We interpret
the map R : y → y as implementing a coarse-graining7 of the system. The random variable
R(y) also has aHamiltonian, denoted H ′(R(y)), whichwe require to have the same functional
form as the original Hamiltonian Hy , although the parameters y may change. In other words,
H ′(R(x)) = Hr(y)(R(x)) for some function r . Since the domain and the range of R coincide,
this map R can be iterated n times Rn = R ◦ R ◦ · · · R, giving a Hamiltonian Hrn(y)(Rn(x))
for the repeatedly renormalized data. Similar to the case of sufficient statistics, P(y|Rn(x))
will then be a compositional function.

7 A typical renormalization scheme for a lattice system involves replacing many spins (bits) with a single
spin according to some rule. In this case, it might seem that the map R could not possibly map its domain
onto itself, since there are fewer degrees of freedom after the coarse-graining. On the other hand, if we let the
domain and range of R differ, we cannot easily talk about the Hamiltonian as having the same functional form,
since the renormalized Hamiltonian would have a different domain than the original Hamiltonian. Physicists
get around this by taking the limit where the lattice is infinitely large, so that R maps an infinite lattice to an
infinite lattice.

123



1238 H. W. Lin et al.

Contrary to some claims in the literature, effective field theory and the renormaliza-
tion group have little to do with the idea of unsupervised learning and pattern-finding.
Instead, the standard renormalization procedures in statistical physics are essentially a
feature extractor for supervised learning, where the features typically correspond to long-
wavelength/macroscopic degrees of freedom. In other words, effective field theory only
makes sense if we specify what features we are interested in. For example, if we are given
data x about the position and momenta of particles inside a mole of some liquid and is tasked
with predicting from this data whether or not Alice will burn her finger when touching the
liquid, a (nearly) sufficient statistic is simply the temperature of the object, which can in
turn be obtained from some very coarse-grained degrees of freedom (for example, one could
use the fluid approximation instead of working directly from the positions and momenta of
∼ 1023 particles). But without specifying that we wish to predict (long-wavelength physics),
there is nothing natural about an effective field theory approximation.

To be more explicit about the link between renormalization and deep-learning, consider
a toy model for natural images. Each image is described by an intensity field φ(r), where
r is a 2-dimensional vector. We assume that an ensemble of images can be described by a
quadratic Hamiltonian of the form

Hy(φ) =
∫ [

y0φ
2 + y1(∇φ)2 + y2

(∇2φ
)2 + · · ·

]
d2r. (23)

Each parameter vector y defines an ensemble of images; we could imagine that the fictitious
classes of images that we are trying to distinguish are all generated by Hamiltonians Hy with
the same above form but different parameter vectors y. We further assume that the function
φ(r) is specified on pixels that are sufficiently close that derivatives can bewell-approximated
by differences. Derivatives are linear operations, so they can be implemented in the first layer
of a neural network. The translational symmetry of Eq. (23) allows it to be implemented with
a convnet. If can be shown [31] that for any course-graining operation that replaces each
block of b × b pixels by its average and divides the result by b2, the Hamiltonian retains the
form of Eq. (23) but with the parameters yi replaced by

y′
i = b2−2i yi . (24)

This means that all parameters yi with i ≥ 2 decay exponentially with b as we repeatedly
renormalize and b keeps increasing, so that for modest b, one can neglect all but the first few
yi ’s. What would have taken an arbitrarily large neural network can now be computed on a
neural network of finite and bounded size, assuming that we are only interested in classifying
the data based only on the coarse-grained variables. These insufficient statistics will still
have discriminatory power if we are only interested in discriminating Hamiltonians which
all differ in their first fewCk . In this example, the parameters y0 and y1 correspond to “relevant
operators” by physicists and “signal” bymachine-learners, whereas the remaining parameters
correspond to “irrelevant operators” by physicists and “noise” by machine-learners.

The fixed point structure of the transformation in this example is very simple, but one can
imagine that in more complicated problems the fixed point structure of various transforma-
tions might be highly non-trivial. This is certainly the case in statistical mechanics problems
where renormalization methods are used to classify various phases of matters; the point here
is that the renormalization group flow can be thought of as solving the pattern-recognition
problem of classifying the long-range behavior of various statistical systems.

123



Why Does Deep and Cheap… 1239

In summary, renormalization can be thought of as a type of supervised learning,8 where
the large scale properties of the system are considered the features. If the desired features
are not large-scale properties (as in most machine learning cases), one might still expect
the a generalized formalism of renormalization to provide some intuition to the problem by
replacing a scale transformation with some other transformation. But calling some proce-
dure renormalization or not is ultimately a matter of semantics; what remains to be seen is
whether or not semantics has teeth, namely, whether the intuition about fixed points of the
renormalization group flow can provide concrete insight into machine learning algorithms.
In many numerical methods, the purpose of the renormalization group is to efficiently and
accurately evaluate the free energy of the system as a function of macroscopic variables of
interest such as temperature and pressure. Thus we can only sensibly talk about the accuracy
of an RG-scheme once we have specified what macroscopic variables we are interested in.

3.6 No-Flattening Theorems

Above we discussed howMarkovian generative models cause p(x |y) to be a composition of
a number of simpler functions fi . Suppose that we can approximate each function fi with
an efficient neural network for the reasons given in Sect. 2. Then we can simply stack these
networks on top of each other, to obtain an deep neural network efficiently approximating
p(x |y).

But is this the most efficient way to represent p(x |y)? Since we know that there are
shallower networks that accurately approximate it, are any of these shallow networks as
efficient as the deep one, or does flattening necessarily come at an efficiency cost?

To be precise, for a neural network f defined by Eq. (6), we will say that the neural network
f�ε is the flattened version of f if its number � of hidden layers is smaller and f�ε approximates
f within some error ε (as measured by some reasonable norm). We say that f�ε is a neuron-
efficient flattening if the sum of the dimensions of its hidden layers (sometimes referred to as
the number of neurons Nn) is less than for f. We say that f�ε is a synapse-efficient flattening if
the number Ns of non-zero entries (sometimes called synapses) in its weight matrices is less
than for f. This lets us define the flattening cost of a network f as the two functions

Cn(f, �, ε) ≡ min
f�ε

Nn(f�ε)
Nn(f)

, (25)

Cs(f, �, ε) ≡ min
f�ε

Ns(f�ε)
Ns(f)

, (26)

specifying the factor by which optimal flattening increases the neuron count and the synapse
count, respectively. We refer to results where Cn > 1 or Cs > 1 for some class of functions
f as “no-flattening theorems”, since they imply that flattening comes at a cost and efficient
flattening is impossible. A complete list of no-flattening theorems would show exactly when
deep networks are more efficient than shallow networks.

8 A subtlety regarding the above statements is presented by the Multi-scale Entanglement Renormalization
Ansatz (MERA) [37]. MERA can be viewed as a variational class of wave functions whose parameters can
be tuned to to match a given wave function as closely as possible. From this perspective, MERA is as an
unsupervised machine learning algorithm, where classical probability distributions over many variables are
replaced with quantum wavefunctions. Due to the special tensor network structure found in MERA, the
resulting variational approximation of a given wavefunction has an interpretation as generating an RG flow.
Hence this is an example of an unsupervised learning problem whose solution gives rise to an RG flow. This
is only possible due to the extra mathematical structure in the problem (the specific tensor network found in
MERA); a generic variational Ansatz does not give rise to any RG interpretation and vice versa.

123



1240 H. W. Lin et al.

There has already been very interesting progress in this spirit, but crucial questions remain.
On one hand, it has been shown that deep is not always better, at least empirically for some
image classification tasks [38].On the other hand,many functions f have been found forwhich
the flattening cost is significant. Certain deep Boolean circuit networks are exponentially
costly to flatten [39]. Two families of multivariate polynomials with an exponential flattening
cost Cn are constructed in [14]. Poggio et al. [6], Mhaskar et al. [15], Mhaskar and Poggio
[16] focus on functions that have tree-like hierarchical compositional form, concluding that
the flattening cost Cn is exponential for almost all functions in Sobolev space. For the ReLU
activation function, [40] finds a class of functions that exhibit exponential flattening costs;
[41] study a tailored complexity measure of deep versus shallow ReLU networks. Eldan
and Shamir [42] shows that given weak conditions on the activation function, there always
exists at least one function that can be implemented in a 3-layer network which has an
exponential flattening cost. Finally, [43,44] study the differential geometry of shallow versus
deep networks, and find that flattening is exponentially neuron-inefficient. Further work
elucidating the cost of flattening various classes of functions will clearly be highly valuable.

3.7 Linear No-Flattening Theorems

In the mean time, we will now see that interesting no-flattening results can be obtained even
in the simpler-to-model context of linear neural networks [45], where the σ operators are
replaced with the identity and all biases are set to zero such thatAi are simply linear operators
(matrices). Everymap is specified by amatrix of real (or complex) numbers, and composition
is implemented by matrix multiplication.

One might suspect that such a network is so simple that the questions concerning flat-
tening become entirely trivial: after all, successive multiplication with n different matrices
is equivalent to multiplying by a single matrix (their product). While the effect of flattening
is indeed trivial for expressibility (f can express any linear function, independently of how
many layers there are), this is not the case for the learnability, which involves non-linear and
complex dynamics despite the linearity of the network [45]. We will show that the efficiency
of such linear networks is also a very rich question.

Neuronal efficiency is trivially attainable for linear networks, since all hidden-layer neu-
rons can be eliminated without accuracy loss by simply multiplying all the weight matrices
together. We will instead consider the case of synaptic efficiency and set � = ε = 0.

Many divide-and-conquer algorithms in numerical linear algebra exploit some factoriza-
tion of a particularmatrixA in order to yield significant reduction in complexity. For example,
when A represents the discrete Fourier transform (DFT), the fast Fourier transform (FFT)
algorithm makes use of a sparse factorization of A which only contains O(n log n) non-zero
matrix elements instead of the naive single-layer implementation, which contains n2 non-
zero matrix elements. As first pointed out in [46], this is an example where depth helps and,
in our terminology, of a linear no-flattening theorem: fully flattening a network that performs
an FFT of n variables increases the synapse count Ns fromO(n log n) toO(n2), i.e., incurs a
flattening cost Cs = O(n/ log n) ∼ O(n). This argument applies also to many variants and
generalizations of the FFT such as the FastWavelet Transform and the FastWalsh-Hadamard
Transform.

Another important example illustrating the subtlety of linear networks is matrix multipli-
cation. More specifically, take the input of a neural network to be the entries of a matrix M
and the output to be NM, where both M and N have size n × n. Since matrix multiplication
is linear, this can be exactly implemented by a 1-layer linear neural network. Amazingly,
the naive algorithm for matrix multiplication, which requires n3 multiplications, is not opti-

123



Why Does Deep and Cheap… 1241

mal: the Strassen algorithm [47] requires only O(nω) multiplications (synapses), where
ω = log2 7 ≈ 2.81, and recent work has cut this scaling exponent down to ω ≈ 2.3728639
[48]. This means that fully optimized matrix multiplication on a deep neural network has a
flattening cost of at least Cs = O(n0.6271361).

Low-rank matrix multiplication gives a more elementary no-flattening theorem. If A is a
rank-k matrix, we can factor it as A = BC where B is a k×n matrix and C is an n×k matrix.
Hence the number of synapses is n2 for an � = 0 network and 2nk for an � = 1-network,
giving a flattening cost Cs = n/2k > 1 as long as the rank k < n/2.

Finally, let us consider flattening a network f = AB, where A and B are random sparse
n × n matrices such that each element is 1 with probability p and 0 with probability 1 − p.
Flattening the network results in amatrix Fi j = ∑

k Aik Bk j , so the probability that Fi j = 0 is
(1− p2)n . Hence the number of non-zero components will on average be

(
1 − (1 − p2)n

)
n2,

so

Cs =
[
1 − (1 − p2)n

]
n2

2n2 p
= 1 − (1 − p2)n

2p
. (27)

Note thatCs ≤ 1/2p and that this bound is asymptotically saturated for n � 1/p2. Hence in
the limit where n is very large, flattening multiplication by sparse matrices p 
 1 is horribly
inefficient.

3.8 A Polynomial No-Flattening Theorem

In Sect. 2, we saw that multiplication of two variables could be implemented by a flat
neural network with 4 neurons in the hidden layer, using Eq. (11) as illustrated in Fig. 2. In
Appendix A, we show that Eq. (11) is merely the n = 2 special case of the formula

n∏

i=1

xi = 1

2n
∑

{s}
s1 . . . snσ(s1x1 + · · · + snxn), (28)

where the sum is over all possible 2n configurations of s1, · · · sn where each si can take on
values±1. In other words, multiplication of n variables can be implemented by a flat network
with 2n neurons in the hidden layer. We also prove in Appendix A that this is the best one
can do: no neural network can implement an n-input multiplication gate using fewer than
2n neurons in the hidden layer. This is another powerful no-flattening theorem, telling us
that polynomials are exponentially expensive to flatten. For example, if n is a power of two,
then the monomial x1x2 . . . xn can be evaluated by a deep network using only 4n neurons
arranged in a deep neural network where n copies of the multiplication gate from Fig. 2 are
arranged in a binary tree with log2 n layers (the 5th top neuron at the top of Fig. 2 need not
be counted, as it is the input to whatever computation comes next). In contrast, a functionally
equivalent flattened network requires a whopping 2n neurons. For example, a deep neural
network can multiply 32 numbers using 4n = 160 neurons while a shallow one requires
232 = 4, 294, 967, 296 neurons. Since a broad class of real-world functions can be well
approximated by polynomials, this helps explain why many useful neural networks cannot
be efficiently flattened.

4 Conclusions

We have shown that the success of deep and cheap (low-parameter-count) learning depends
not only on mathematics but also on physics, which favors certain classes of exceptionally

123



1242 H. W. Lin et al.

simple probability distributions that deep learning is uniquely suited to model. We argued
that the success of shallow neural networks hinges on symmetry, locality, and polynomial
log-probability in data from or inspired by the natural world, which favors sparse low-order
polynomial Hamiltonians that can be efficiently approximated. These arguments should be
particularly relevant for explaining the success of machine learning applications to physics,
for example using a neural network to approximate amany-bodywavefunction [49].Whereas
previous universality theorems guarantee that there exists a neural network that approximates
any smooth function to within an error ε, they cannot guarantee that the size of the neural
network does not grow to infinity with shrinking ε or that the activation function σ does
not become pathological. We show constructively that given a multivariate polynomial and
any generic non-linearity, a neural network with a fixed size and a generic smooth activation
function can indeed approximate the polynomial highly efficiently.

Turning to the separate question of depth, we have argued that the success of deep learning
depends on the ubiquity of hierarchical and compositional generative processes in physics
and other machine learning applications. By studying the sufficient statistics of the genera-
tive process, we showed that the inference problem requires approximating a compositional
function of the form f1 ◦ f2 ◦ f2 ◦ · · · that optimally distills out the information of interest
from irrelevant noise in a hierarchical process that mirrors the generative process. Although
such compositional functions can be efficiently implemented by a deep neural network as
long as their individual steps can, it is generally not possible to retain the efficiency while
flattening the network. We extend existing “no-flattening” theorems [14–16] by showing that
efficient flattening is impossible even for many important cases involving linear networks. In
particular, we prove that flattening polynomials is exponentially expensive, with 2n neurons
required to multiply n numbers using a single hidden layer, a task that a deep network can
perform using only ∼ 4n neurons.

Strengthening the analytic understanding of deep learningmay suggest ways of improving
it, both to make it more capable and to make it more robust. One promising area is to prove
sharper and more comprehensive no-flattening theorems, placing lower and upper bounds on
the cost of flattening networks implementing various classes of functions.

Acknowledgements This work was supported by the Foundational Questions Institute http://fqxi.org/, the
Rothberg Family Fund for Cognitive Science and NSF Grant 1122374. We thank Scott Aaronson, Frank Ban,
Yoshua Bengio, Rico Jonschkowski, Tomaso Poggio, Bart Selman, Viktoriya Krakovna, Krishanu Sankar
and Boya Song for helpful discussions and suggestions, Frank Ban, Fernando Perez, Jared Jolton, and the
anonymous referee for helpful corrections and the Center for Brains, Minds, and Machines (CBMM) for
hospitality.

Appendix A: The Polynomial No-Flattening Theorem

We saw above that a neural network can compute polynomials accurately and efficiently at
linear cost, using only about 4 neurons per multiplication. For example, if n is a power of
two, then the monomial

∏n
i=1 xi can be evaluated using 4n neurons arranged in a binary tree

network with log2 n hidden layers. In this appendix, we will prove a no-flattening theorem
demonstrating that flattening polynomials is exponentially expensive.

Theorem Suppose we are using a generic smooth activation function σ(x) = ∑∞
k=0 σk xk ,

where σk �= 0 for 0 ≤ k ≤ n. Then for any desired accuracy ε > 0, there exists a neural
network that can implement the function

∏n
i=1 xi using a single hidden layer of 2

n neurons.

123

http://fqxi.org/


Why Does Deep and Cheap… 1243

Furthermore, this is the smallest possible number of neurons in any such network with only
a single hidden layer.

This result may be compared to problems in Boolean circuit complexity, notably the
question of whether TC0 = TC1 [50]. Here circuit depth is analogous to number of layers,
and the number of gates is analogous to the number of neurons. In both the Boolean circuit
model and the neural network model, one is allowed to use neurons/gates which have an
unlimited number of inputs. The constraint in the definition of TCi that each of the gate
elements be from a standard universal library (AND, OR, NOT, Majority) is analogous
to our constraint to use a particular nonlinear function. Note, however, that our theorem is
weaker by applying only to depth 1, while TC0 includes all circuits of depth O(1).

A.1 Proof that 2n Neurons are Sufficient

A neural network with a single hidden layer of m neurons that approximates a product gate
for n inputs can be formally written as a choice of constants ai j and w j satisfying

m∑

j=1

w jσ

(
n∑

i=1

ai j xi

)

≈
n∏

i=1

xi . (A1)

Here, we use ≈ to denote that the two sides of (A1) have identical Taylor expansions up
to terms of degree n; as we discussed earlier in our construction of a product gate for two
inputs, this exables us to achieve arbitrary accuracy ε by first scaling down the factors xi ,
then approximately multiplying them and finally scaling up the result.

Wemay expand (A1) using the definition σ(x) = ∑∞
k=0 σk xk and drop terms of the Taylor

expansion with degree greater than n, since they do not affect the approximation. Thus, we
wish to find the minimal m such that there exist constants ai j and w j satisfying

σn

m∑

j=1

w j

(
n∑

i=1

ai j xi

)n

=
n∏

i=1

xi , (A2)

σk

m∑

j=1

w j

(
n∑

i=1

ai j xi

)k

= 0, (A3)

for all 0 ≤ k ≤ n − 1. Let us set m = 2n , and enumerate the subsets of {1, . . . , n} as
S1, . . . , Sm in some order. Define a network of m neurons in a single hidden layer by setting
ai j equal to the function si (S j ) which is −1 if i ∈ S j and +1 otherwise, setting

w j ≡ 1

2nn!σn
n∏

i=1

ai j = (−1)|S j |

2nn!σn . (A4)

In other words, up to an overall normalization constant, all coefficients ai j and w j equal ±1,
and each weight w j is simply the product of the corresponding ai j .

We must prove that this network indeed satisfies Eqs. (A2) and (A3). The essence of our
proof will be to expand the left hand side of Eq. (A1) and show that all monomial terms except
x1 ···xn come in pairs that cancel. To show this, consider a singlemonomial p(x) = xr11 · · · xrnn
where r1 + . . . + rn = r ≤ n.

If p(x) �= ∏n
i=1 xi , then we must show that the coefficient of p(x) in σr

∑m
j=1 w j(∑n

i=1 ai j xi
)r is 0. Since p(x) �= ∏n

i=1 xi , there must be some i0 such that ri0 = 0. In
other words, p(x) does not depend on the variable xi0 . Since the sum in Eq. (A1) is over all

123



1244 H. W. Lin et al.

combinations of ± signs for all variables, every term will be canceled by another term where
the (non-present) xi0 has the opposite sign and the weight w j has the opposite sign:

σr

m∑

j=1

w j

(
n∑

i=1

ai j xi

)r

= σr
∑

S j

(−1)|S j |

2nn!σr

(
n∑

i=1

si (S j )xi

)r

= σr
∑

S j ��i0

[
(−1)|S j |

2nn!σr

(
n∑

i=1

si (S j )xi

)r

+ (−1)|S j∪{i0}|

2nn!σr

(
n∑

i=1

si (S j ∪ {i0})xi
)r ]

=
∑

S j ��i0

(−1)|S j |

2nn!
[(

n∑

i=1

si (S j )xi

)r

−
(

n∑

i=1

si (S j ∪ {i0})xi
)r ]

Observe that the coefficient of p(x) is equal in
(∑n

i=1 si (S j )xi
)r and

(∑n
i=1 si (S j ∪ {i0})xi

)r , since ri0 = 0. Therefore, the overall coefficient of p(x) in the
above expression must vanish, which implies that (A3) is satisfied.

If instead p(x) = ∏n
i=1 xi , then all terms have the coefficient of p(x) in

(∑n
i=1 ai j xi

)n

is n! ∏n
i=1 ai j = (−1)|S j |n!, because all n! terms are identical and there is no cancelation.

Hence, the coefficient of p(x) on the left-hand side of (A2) is

σn

m∑

j=1

(−1)|S j |

2nn!σn (−1)|S j |n! = 1,

completing our proof that this network indeed approximates the desired product gate.
From the standpoint of group theory, our construction involves a representation of the

group G = Z
n
2, acting upon the space of polynomials in the variables x1, x2, . . . , xn . The

group G is generated by elements gi such that gi flips the sign of xi wherever it occurs. Then,
our construction corresponds to the computation

f(x1, . . . , xn) = (1 − g1)(1 − g2) · · · (1 − gn)σ (x1 + x2 + . . . + xn).

Every monomial of degree at most n, with the exception of the product x1 · · · xn , is sent to
0 by (1 − gi ) for at least one choice of i . Therefore, f(x1, . . . , xn) approximates a product
gate (up to a normalizing constant).

123



Why Does Deep and Cheap… 1245

A.2 Proof that 2n Neurons are Necessary

Suppose that S is a subset of {1, . . . , n} and consider taking the partial derivatives of (A2) and
(A3), respectively, with respect to all the variables {xh}h∈S . Then, we obtain the equalities

n! σn
(n − |S|)!

m∑

j=1

w j

∏

h∈S
ahj

(
n∑

i=1

ai j xi

)n−|S|
=

∏

h /∈S
xh, (A5)

k! σk
(k − |S|)!

m∑

j=1

w j

∏

h∈S
ahj

(
n∑

i=1

ai j xi

)k−|S|
= 0, (A6)

for all 0 ≤ k ≤ n − 1. Let A denote the 2n × m matrix with elements

ASj ≡
∏

h∈S
ahj . (A7)

We will show that A has full row rank. Suppose, towards contradiction, that ctA = 0 for
some non-zero vector c. Specifically, suppose that there is a linear dependence between rows
of A given by

r∑

�=1

c�AS�, j = 0, (A8)

where the S� are distinct and c� �= 0 for every �. Let s be the maximal cardinality of any S�.
Defining the vector d whose components are

d j ≡ w j

(
n∑

i=1

ai j xi

)n−s

, (A9)

taking the dot product of Eq. (A8) with d gives

0 = ctAd =
r∑

�=1

c�

m∑

j=1

w j

∏

h∈S�

ahj

(
n∑

i=1

ai j xi

)n−s

=
∑

�|(|S�|=s)

c�

m∑

j=1

w j

∏

h∈S�

ahj

(
n∑

i=1

ai j xi

)n−|S�|
(A10)

+
∑

�|(|S�|<s)

c�

m∑

j=1

w j

∏

h∈S�

ahj

(
n∑

i=1

ai j xi

)(n+|S�|−s)−|S�|
.

Applying Eq. (A6) (with k = n+|S�|− s) shows that the second term vanishes. Substituting
Eq. (A5) now simplifies Eq. (A10) to

0 =
∑

�|(|S�|=s)

c�(n − |S�|)!
n! σn

∏

h /∈S�

xh, (A11)

i.e., to a statement that a set ofmonomials are linearly dependent. Since all distinctmonomials
are in fact linearly independent, this is a contradiction of our assumption that the S� are distinct
and c� are nonzero. We conclude that A has full row rank, and therefore that m ≥ 2n , which
concludes the proof.

123



1246 H. W. Lin et al.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
2. Bengio, Y.: Learning deep architectures for AI, foundations and trends®. Mach. Learn. 2, 1–127 (2009)
3. Russell, S., Dewey, D., Tegmark, M.: Research priorities for robust and beneficial artificial intelligence.

AI Mag. 36, 105–114 (2015)
4. Herbrich, R., Williamson, R.C.: Algorithmic luckiness. J. Mach. Learn. Res. 3, 175–212 (2002)
5. Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-

dependent hierarchies. IEEE Trans. Inf. Theory 44, 1926–1940 (1998)
6. Poggio, T., Anselmi, F., Rosasco, L.: I-theory on depth vswidth: hierarchical function composition. Center

Brains Minds Mach. (2015). Technical Reports
7. Mehta, P., Schwab, D.J.: An exact mapping between the variational renormalization group and deep

learning. arXiv:1410.3831 (2014)
8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators.

Neural Netw. 2, 359–366 (1989)
9. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2,

303–314 (1989)
10. Pinkus, A.: Approximation theory of the MLPmodel in neural networks. Acta Numer. 8, 143–195 (1999)
11. Gnedenko, B., Kolmogorov, A., Gnedenko, B., Kolmogorov, A.: Limit distributions for sums of indepen-

dent. Am. J. Math. 105, 28–35 (1954)
12. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)
13. Tegmark, M., Aguirre, A., Rees, M.J., Wilczek, F.: Dimensionless constants, cosmology, and other dark

matters. Phys. Rev. D 73, 023505 (2006)
14. Delalleau, O., Bengio, Y.: Shallow vs. deep sum-product networks. In: Advances in Neural Information

Processing Systems, pp. 666–674 (2011)
15. Mhaskar, H., Liao,Q., Poggio, T.: Learning functions: when is deep better than shallow. arXiv:1603.00988

(2016)
16. Mhaskar, H., Poggio, T.: Deep vs. shallow networks: an approximation theory perspective.

arXiv:1608.03287 (2016)
17. Adam, R., Ade, P., Aghanim, N., Akrami, Y., Alves, M., Arnaud, M., Arroja, F., Aumont, J., Baccigalupi,

C., Ballardini, M., et al.: arXiv:1502.01582 (2015)
18. Seljak, U., Zaldarriaga, M.: A line of sight approach to cosmic microwave background anisotropies.

arXiv:astro-ph/9603033 (1996)
19. Tegmark, M.: How to measure CMB power spectra without losing information. Phys. Rev. D 55, 5895

(1997)
20. Bond, J., Jaffe, A.H., Knox, L.: Estimating the power spectrum of the cosmic microwave background.

Phys. Rev. D 57, 2117 (1998)
21. Tegmark, M., de Oliveira-Costa, A., Hamilton, A.J.: High resolution foreground cleaned CMBmap from

WMAP. Phys. Rev. D 68, 123523 (2003)
22. Ade, P., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J.,

Baccigalupi, C., Banday, A.J., Barreiro, R., et al.: Planck 2013 results. XII. Diffuse component separation.
Astron. Astrophys. 571, A12 (2014)

23. Tegmark, M.: How to make maps from cosmic microwave background data without losing information.
Astrophys. J. Lett. 480, L87 (1997)

24. Hinshaw, G., Barnes, C., Bennett, C., Greason, M., Halpern, M., Hill, R., Jarosik, N., Kogut, A., Limon,
M., Meyer, S., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) WMAP is the result
of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific
guidance is provided by theWMAPScience Team. Observations: data processingmethods and systematic
error limits. Astrophys. J. Suppl. Ser. 148, 63 (2003)

25. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9, 926 (2010)
26. Émile Borel, M.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Cir-

colo Matematico di Palermo (1884–1940) 27, 247–271 (1909)
27. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser.

A Contain. Pap. Math. Phys. Charact. 222, 309–368 (1922)
28. Riesenhuber, M., Poggio, T.: Models of object recognition. Nat. Neurosci. 3, 1199–1204 (2000)
29. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951). doi:10.

1214/aoms/1177729694
30. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)
31. Kardar, M.: Statistical Physics of Fields. Cambridge University Press, Cambridge (2007)

123

http://arxiv.org/abs/1410.3831
http://arxiv.org/abs/1603.00988
http://arxiv.org/abs/1608.03287
http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/astro-ph/9603033
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694


Why Does Deep and Cheap… 1247

32. Cardy, J.: Scaling and Renormalization in Statistical Physics, vol. 5. Cambridge University Press, Cam-
bridge (1996)

33. Johnson, J.K., Malioutov, D.M., Willsky, A.S.: Lagrangian relaxation for MAP estimation in graphical
models. arXiv:0710.0013 (2007)

34. Bény, C.: Deep learning and the renormalization group. arXiv:1301.3124 (2013)
35. Saremi, S., Sejnowski, T.J.: Hierarchical model of natural images and the origin of scale invariance. Proc.

Natl. Acad. Sci. 110, 3071–3076 (2013). http://www.pnas.org/content/110/8/3071.full.pdf, http://www.
pnas.org/content/110/8/3071.abstract

36. Miles Stoudenmire, E., Schwab, D.J.: Supervised learning with quantum-inspired tensor networks.
arXiv:1605.05775 (2016)

37. Vidal, G.: Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101,
110501 (2008). arXiv:quant-ph/0610099

38. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information Processing
Systems, pp. 2654–2662 (2014)

39. Hastad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, pp. 6–20. Organization ACM (1986)

40. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv:1509.08101 (2015)
41. Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions of deep neural networks.

In: Advances in Neural Information Processing Systems, pp. 2924–2932 (2014)
42. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. arXiv:1512.03965 (2015)
43. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural

networks through transient chaos. arXiv:1606.05340 (2016)
44. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J.: On the expressive power of deep

neural networks. arXiv:1606.05336 (2016)
45. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep

linear neural networks. arXiv:1312.6120 (2013)
46. Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards AI. Large Scale Kernel Mach. 34, 1–41

(2007)
47. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
48. Le Gall, F.: In: Proceedings of the 39th international symposium on symbolic and algebraic computation.

Organization ACM, pp. 296–303 (2014)
49. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks.

arXiv:1606.02318 (2016)
50. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin (2013)

123

http://arxiv.org/abs/0710.0013
http://arxiv.org/abs/1301.3124
http://www.pnas.org/content/110/8/3071.full.pdf
http://www.pnas.org/content/110/8/3071.abstract
http://www.pnas.org/content/110/8/3071.abstract
http://arxiv.org/abs/1605.05775
http://arxiv.org/abs/quant-ph/0610099
http://arxiv.org/abs/1509.08101
http://arxiv.org/abs/1512.03965
http://arxiv.org/abs/1606.05340
http://arxiv.org/abs/1606.05336
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1606.02318

	Why Does Deep and Cheap Learning Work So Well?
	Abstract
	1 Introduction
	1.1 The Swindle: Why Does ``Cheap Learning'' Work?

	2 Expressibility and Efficiency of Shallow Neural Networks
	2.1 Probabilities and Hamiltonians
	2.2 Bayes' Theorem as a Softmax
	2.3 What Hamiltonians can be Approximated by Feasible Neural Networks?
	2.3.1 Continuous Input Variables
	2.3.2 Discrete Input Variables

	2.4 What Hamiltonians Do We Want to Approximate?
	2.4.1 Low Polynomial Order
	2.4.2 Locality
	2.4.3 Symmetry


	3 Why Deep?
	3.1 Hierarchical Processess
	3.2 Resolving the Swindle
	3.3 Sufficient Statistics and Hierarchies
	3.4 Approximate Information Distillation
	3.5 Distillation and Renormalization
	3.6 No-Flattening Theorems
	3.7 Linear No-Flattening Theorems
	3.8 A Polynomial No-Flattening Theorem

	4 Conclusions
	Acknowledgements
	Appendix A: The Polynomial No-Flattening Theorem
	A.1 Proof that 2n Neurons are Sufficient
	A.2 Proof that 2n Neurons are Necessary

	References




