J Comput Neurosci (2014) 36:119-140
DOI 10.1007/s10827-013-0458-4

Synergy, redundancy, and multivariate information
measures: an experimentalist’s perspective

Nicholas Timme - Wesley Alford - Benjamin Flecker -
John M. Beggs

Received: 9 August 2012 / Revised: 26 April 2013 / Accepted: 29 April 2013 / Published online: 3 July 2013

© Springer Science+Business Media New York 2013

Abstract Information theory has long been used to quan-
tify interactions between two variables. With the rise of
complex systems research, multivariate information mea-
sures have been increasingly used to investigate interac-
tions between groups of three or more variables, often
with an emphasis on so called synergistic and redundant
interactions. While bivariate information measures are com-
monly agreed upon, the multivariate information measures
in use today have been developed by many different groups,
and differ in subtle, yet significant ways. Here, we will
review these multivariate information measures with special
emphasis paid to their relationship to synergy and redun-
dancy, as well as examine the differences between these
measures by applying them to several simple model sys-
tems. In addition to these systems, we will illustrate the
usefulness of the information measures by analyzing neu-
ral spiking data from a dissociated culture through early
stages of its development. Our aim is that this work will aid
other researchers as they seek the best multivariate informa-
tion measure for their specific research goals and system.
Finally, we have made software available online which
allows the user to calculate all of the information measures
discussed within this paper.
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1 Introduction

Since its introduction by Shannon to quantify communica-
tion (Shannon 1948), information theory has proved to be
a useful tool in many disciplines. It has been successfully
applied in several areas of research, including neuroscience
(Rieke et al. 1997), data compression (Ziv and Lempel
1977), coding (Berrou et al. 1993), dynamical systems
(Fraser and Swinney 1986), and genetic coding (Butte and
Kohane 2000), just to name a few. Information theory’s
broad applicability is due in part to the fact that it relies
only on the probability distribution associated with one or
more variables. Generally speaking, information theory uses
the probability distributions associated with the values of
the variables to ascertain whether or not the values of the
variables are related and, depending on the situation, the
way in which they are related. As a result of this, informa-
tion theory can be applied to linear and non-linear systems.
In summary, information theory is a model-independent
approach.

Information theoretic approaches to problems involv-
ing one and two variables are well understood and widely
used. However, many systems contain interactions between
three or more variables (in neuroscience see, for instance,
Quiroga and Panzeri 2009; Ohiorhenuan 2010; Yeh et al
2010). Several information measures have been introduced
to analyze these multivariate interactions (McGill 1954;
Watanabe 1960; Han 1975; Chechik et al. 2001; Nirenberg
et al. 2001; Schneidman et al. 2003b; Varadan et al. 2006;
Williams and Beer 2010). Frequently, these measures were
introduced to measure so called “synergy” and/or “redun-
dancy.” These multivariate information measures have
been applied in physical systems (Cerf and Adami 1997,
Matsuda 2000), biological systems (Anastassiou 2007;
Chanda et al. 2007), and neuroscience (Brenner et al. 2000;
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Schneidman et al. 2003a; Bettencourt et al. 2007). However,
these multivariate information measures differ in signifi-
cant and sometimes subtle ways. Furthermore, the notation
and naming associated with these measures is inconsistent
throughout the literature (see for example, Watanabe 1960;
Tanoni et al. 1994; Sporns et al. 2000; Schneidman et al.
2003b; Wennekers and Ay 2003).

Within this paper, we will examine a wide array of
multivariate information measures in an attempt to clearly
articulate the different measures and their uses. First, we
will discuss the concepts of synergy and redundancy, as
well as how these multivariate information measures fit into
data analysis. Then, we will review the information the-
ory behind each individual measure while paying specific
attention to two perspectives of interactions: those that exist
within a group of variables and those that exist between a
group of variables and another target variable. Next, we will
apply the information measures to several model systems in
order to illuminate their differences and similarities. Also,
we will apply the information measures to neural spiking
data from a dissociated neural culture. Finally, we will dis-
cuss the overall results for each information measure in turn,
as well as how the information measures could be used in
three example experiments in neuroscience. Our goal is to
clarify these methods for other researchers as they search for
the multivariate information measure that will best address
their specific research goals. We wish to emphasize that
we are not attempting to guide the development of infor-
mation theory; rather we seek to facilitate a broader use of
information theoretic tools.

In order to facilitate the use of the information mea-
sures discussed in this paper, we have made freely available
MATLAB software that can be used to calculate all of the
information measures discussed herein.! An earlier version
of this work was previously posted on the arXiv (Timme
et al. 2011).

2 Information theory analysis

Before proceeding to a discussion of the information mea-
sures, we will briefly note the place of these measures in the
various types of data analyses that can be performed, as well
as the types of experimental questions that can be addressed
with these analyses (see Victor 2006; Quiroga and Panzeri
2009 for further reviews in neuroscience).

Information theory can be applied to many types of
systems to address many types of experimental questions.
Often times, information theory is employed to examine
whether or not and to what degree one or more vari-
ables encode information about some other variable(s). In

Uhttp://mypage.iu.edu/~nmtimme.

@ Springer

neuroscience, information theory is typically applied in two
widely-used experimental systems: in vivo sensory encod-
ing experiments (see Optican and Richmond 1987; Borst
and Theunissen 1999; Brenner et al. 2000; Panzeri et al.
2001; Rokem et al. 2006; Gollisch and Meister 2008 as
examples) and network experiments (see Butts and Rokhsar
2001; Bettencourt et al. 2007, 2008; Garofalo et al. 2009 as
examples).

Sensory encoding experiments typically involve the
simultaneous recording of a controlled stimulus and the
resulting neural activity of a subject. Experimental ques-
tions in this area might include, but are not limited to:
Do individual neurons encode certain features of a stimu-
lus or do neurons somehow work together to encode the
stimulus? What feature of the neural activity contains the
code (e.g. spike rate or spike timing)? How robust is the
encoding process to different types of noise? How do the
measurements resulting from information theory relate to
the physical structure of the sensory processing system in
the organism? (See Quiroga and Panzeri 2013 for a recent
review of the issues related coding.)

We would like to emphasize that encoding experiments
are fundamentally different from decoding experiments.
Sensory decoding experiments involve the construction of
a function that takes the neural activity as its input and
produces an estimate of the stimulus variable as an output
(Bialek et al. 1991; Warland et al. 1997, Pillow et al. 2008).
There may be many ways (e.g. linear filter or generalized
linear/nonlinear models) to construct this function. Infor-
mation theory does not specify how this should be done
and does not specify how to measure the error between the
estimated and actual stimulus variables (Schneidman et al.
2003a). Because decoding is often done without reference to
information theory, we will focus on encoding and network
experiments as examples.

Network experiments typically involve the simultaneous
recording of several neural sources. Experimental questions
in this area might include, but are not limited to: Can the
activity of a neural source be used to predict the activity of
another neural source, thus implying a functional or effec-
tive connection between the two sources? How do the graph-
ical models of the neural sources that can be generated relate
to the effective, functional, or physical connectivity of the
entire system? What types of interactions are present in the
network and to what degree? How much of the neural activ-
ity can be accounted for by different subsets of sources?

Notice that, since information theory utilizes probability
distributions, encoding experiments involving n variables
and network experiments involving the spontaneous activ-
ity of n variables are equivalent in terms of the structure
of the probability distribution and thus indistinguishable
in terms of the application of information theory. For
instance, a researcher may record action potentials from two
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neurons in the visual system of an animal as well as some
visual stimulus variable. Another researcher may record
action potentials from three neurons using a multi-electrode
array. Both researchers would be interested in understand-
ing the interactions between the three variables in his or her
respective experiment. Either researcher can apply any of
the multivariate information measures discussed herein to
the probability distributions from their systems. Clearly, the
choice of the information measure and the way in which
it is applied to the system will directly impact the conclu-
sions that can be drawn from the analysis. However, in terms
of the structure of the necessary probability distributions,
these two types of experiments are equivalent. As a result,
they can be treated equally with the multivariate information
measures discussed herein.

In the typical analysis, raw data is gathered from some
source, such as neurons, an experimentally controlled vari-
able, stock values, genes, or some other source. Then, the
data are processed (e.g. spike detection in single neuron
recordings) and converted to joint probability distributions.
Depending on the type of data being analyzed, this pro-
cess often involves binning the data into discrete states and
discrete temporal units. Also, depending on the causal rela-
tionship between the elements of the experimental system, a
time delay may be introduced between the variables. Once
these joint probability distributions are obtained, they are
passed through the chosen information measure to obtain a
final result.

As all experimentalists know, the choices made through-
out an analysis can dramatically affect the final results and
errors early in the process can propagate throughout the
analysis with unpredictable effects. How do you choose
which data to analyze? The data are often continuous and
always noisy and limited, so how do you know if you
are applying the right binning algorithm? Even if the data
were perfect and infinite, how do you conceptually choose
the correct binning algorithm? Furthermore, could a bin-
less algorithm be utilized to avoid binning problems (Victor
2002; Paiva et al. 2010)? Finally, even if you obtain the
“best” possible probability distribution, how do you choose
the right information measure to answer your experimental
question? Within this paper we will only seek to address this
final question, though we wish to emphasize that a careful
consideration of all these points is essential to any analysis.

The continuous, noisy, and limited nature of data can
affect the results from information measures in com-
plex ways. Several efforts have been made to take these
effects into account theoretically for some, but not all,
of the information measures discussed herein (Treves and
Panzeri 1995; Panzeri and Treves 1996; Strong et al. 1997;
Paninski 2003; Schneidman et al. 2003a; Nemenman et al.
2004; Kennel et al. 2005; Averbeck et al. 2006; Hlavackova-
Schindler et al. 2007; Panzeri et al. 2007; Shlens et al.

2007). Generally, these works discuss correction terms that
can be applied to information values and/or approximation
methods that can be applied to information values to cor-
rect for sampling bias. As far as we are aware, research on
the bias associated with an information measure has only
been conducted on the most basic information theory mea-
sures we consider herein: entropy and mutual information
(see Panzeri and Treves 1996; Strong et al. 1997 in particu-
lar). Several of the information measures we will discuss can
be directly defined in terms of entropy and mutual informa-
tion, but several cannot. Given the complexity of this topic
and the fact that the bias associated with several of the infor-
mation measures discussed herein have not been studied, a
thorough examination of the bias produced by the sampling
of noisy data is beyond the scope of this review. Though, we
will discuss the issue briefly in connection with an exam-
ple data analysis in Section 5.7. In conclusion, the reader is
cautioned to carefully consider the effects of sampling bias
in his or her analysis.

3 Synergy and redundancy

A crucial topic related to multivariate information mea-
sures is the distinction between synergy and redundancy.
Many of the proposed information measures purport to mea-
sure synergy or redundancy, though the precise meanings
of “synergy” and “redundancy” have not been agreed upon
(see, for instance, Brenner et al. 2000; Williams and Beer
2010). (For a recent treatment of synergy in this context, see
Griffith and Koch 2012.)

To begin to understand synergy, we can use a simple sys-
tem. Suppose two variables (call them X and X») provide
some information about a third variable (call it Y). In other
words, if you know the state of X and X5, then you know
something about the state Y. Loosely said, the portion of
that information that is not provided by knowing both X
alone and X, alone is said to be provided synergistically by
X1 and X5. The synergy is the bonus information received
by knowing X and X together, instead of separately.

We can take a similar initial approach to redundancy.
Again, suppose X1 and X, provide some information about
Y. The common portion of the information X; provides
alone and the information X, provides alone is said to be
provided redundantly by X and X;. The redundancy is the
information received from both X and X».

These imprecise definitions may seem clear enough,
but in attempting to measure these quantities, researchers
have created distinct measures that produce different results.
Based on the fact that the overall goal has not been clearly
defined, it cannot be said that one of these measures
is “correct.”” Rather, each measure has its own uses and
limitations. Using the simple systems below, we will

@ Springer



122

J Comput Neurosci (2014) 36:119-140

attempt to clearly articulate the differences between the
multivariate information measures.

4 Multivariate information measures

In this section we will discuss the various multivariate
information theoretic measures that have been introduced
previously. Of special note is the fact that the names and
notation used in the literature have not been consistent. We
will attempt to clarify the discussion as much as possible by
listing alternative names when appropriate. We will refer to
an information measure by its original name (or at least, its
original name to the best of our knowledge).

4.1 Entropy and mutual information

The information theoretic quantities involving one and
two variables are well-defined and their results are well-
understood. Regarding the probability distribution of one
variable (call it p(x)), the canonical measure is the entropy
H (x) (Cover and Thomas 2006). The entropy is given by: 2

H(X) == p(x)log(p(x)) (1)

xeX

The entropy quantifies the amount of uncertainty that is
present in the probability distribution. If the probability dis-
tribution is concentrated near one value, the entropy will be
low. If the probability distribution is uniform, the entropy
will be maximized.

When examining the relationship between two variables,
the mutual information (I) quantifies the amount of infor-
mation provided about one of the variables by knowing the
value of the other (Cover and Thomas 2006). The mutual
information is given by:

I(X:Y) = HX) — HX|Y) = HY) — HY|X)
= HX)+HY)—-H(X,Y) (2

where the conditional entropy is given by:

H(X|Y) = Y p()H(XIy)

yeY
1
— 1 3
yezyp@);p(xm TS 3)

2Throughout the paper we will use capital letters to refer to variables
and lower case letters to refer to individual values of those variables.
We will also use discrete variables, though several of the information
measures discussed can be directly extended to continuous variables.
When working with a continuous variable, various techniques exists,
such as kernel density estimation, which can be used to infer a dis-
crete distribution from a continuous variable. Logarithms will be base
2 throughout in order to produce information values in units of bits.

@ Springer

The mutual information can also be written as the
Kullback-Leibler divergence between the joint probability
distribution of the actual data and the joint probability dis-
tribution of the independent model (wherein the joint distri-
bution is equal to the product of the marginal distributions).
This form is given by:

p(x,y) )
I(X:v)= Y. Cy)log [ o220 4
( ) xex’erp(x y) 0g<p(x)p(y) “®

The mutual information can be used as a measure of
the interactions among more than two variables by group-
ing the variables into sets and treating each set as a single
vector-valued variable. In this way, the mutual information
can be used to measure the interactions between a group
of variables and a target variable. For instance, the mutual
information can be calculated between Y and the set S =
{X1, X»}? in the following way:

(¥, x1,x2)
1(Y;8) = E p(y, x1, x2) log (—p - )
~ P p(x1, x2)
xlEXl.xzeXz

&)

However, when the mutual information is considered as in
Eq. (5), it is not possible to separate contributions from indi-
vidual X variables in the set S. Still, by varying the number
of variables in §, the mutual information in Eq. (5) can be
used to measure the gain or loss in information about Y by
those variables in S. Along these lines, Bettencourt et al.
used the mutual information between one variable (in their
case, the activity of a neuron) and many other variables con-
sidered together (in their case, the activities of a group of
other neurons) in order to examine the relationship between
the amount of information the group of neurons provided
about the single neuron to the number of neurons considered
in the group (Bettencourt et al. 2008).

The mutual information can be conditioned upon a third
variable to yield the conditional mutual information (Cover
and Thomas 20006). It is given by:

1(X:Y|Z)

= ZP(Z) Z p(x, y|z) log

z€Z xeX,yeY

Y. z)IOgM ©
px,2)p(y, 2)

p(x, ylz)
px12)p(ylz)

xeX,yeY,zeZ

The conditional mutual information quantifies the amount
of information one variable provides about a second variable

3We will use S to refer to a set of n X variables such that S =
{X1, X2, ...X,} throughout the paper.
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when a third variable is known. Note that it is possible for
the conditional mutual information 7 (X; Y|Z) to be larger
or smaller than the mutual information I (X; Y).

4.2 Interaction information

The first attempt to quantify the relationship among three
variables in a joint probability distribution was the inter-
action information (IT), which was introduced by McGill
(McGill 1954). It attempts to extend the concept of the
mutual information as the information gained about one
variable by knowing the other. The interaction information
is given by:

11(X:Y;Z) = [(X:Y|Z)— [(X;Y)
1(X; Z|Y) — I(X; Z)
I(Z;Y|X)— I(Z;Y) @)

Given the fact that the conditional mutual information
can be larger or smaller than the mutual information for
the same set of variables, the interaction information can be
positive or negative. Of the interaction information, McGill
said (McGill 1954), “We see that 11(X; Y; Z) is the gain
(or loss) in sample information transmitted between any two
of the variables, due to the additional knowledge of the third
variable.” The interaction information can also be written
as:

(XY 2)=1X,Y:2) - (I(X;: D)+ 1(Y;: 2))  (8)

In the form given in Eq. (8), the interaction information
has been widely used in the literature and has often been
referred to as the synergy (Gat and Tishby 1999; Brenner
et al. 2000; Schneidman et al. 2003a; Anastassiou 2007)
and the redundancy-synergy index (Chechik et al. 2001).
Some authors have used the term “synergy” because they
have interpreted a positive interaction information result to
imply a synergistic interaction among the variables and a
negative interaction information result to imply a redun-
dant interaction among the variables. Thus, if we assume
this interpretation of the interaction information and that
the interaction information correctly measures multivari-
ate interactions, then synergy and redundancy are taken to
be mutually exclusive qualities of the interactions between
variables. This view will find a counterpoint in the partial
information decomposition to be discussed below.

Note that the interaction information does not theoreti-
cally differentiate between its three input variables. Equa-
tion (8) is structured in such a way that it appears that
variables X and Y are being related to Z, but, based on
Eq. (7), we see that we can permute the variables at will.
Thus, the interaction information measures the interactions

among a group of variables, as opposed to the interactions
between a group of variables and a target variable.

The interaction information can also be written as an
expansion of the entropies and joint entropies of the
variables:

1I(X;Y:Z) = —H(X)— HY) - H(Z)+ HX, Y)
+H(X,Z)+H(Y,Z)— H(X,Y,Z) (9)

This form leads to an expansion for the interaction infor-
mation for n number of variables (Jakulin and Bratko 2008).

If S = {X, X5,...X,}, then the interaction information

becomes:

11(8) = =Y (=S H(T) (10)
TCS

In Eq. (10), T is a subset of S and |S| denotes the set
size of S. From Eq. (10), it is apparent that the interaction
information treats all input variables equally and measures
interactions among all variables for any number of input
variables.

A measure similar to the interaction information was
introduced by Bell and is referred to as the co-information
(CI) (Bell 2003). It is given by the following expansion:

CI(S) = — Z(—l)mH(T) = (=DS1(8) (11)
TCS
Clearly, the co-information is equal to the interaction
information when § contains an even number of variables
and is equal to the negative of the interaction information
when S contains an odd number of variables. So, for the
three variable case, the co-information becomes:

CIX;Y;Z) = I(X;Y) — I(X,Y|Z)
— I(X:2)+1(Y;:Z)—I(X,Y;Z) (12)

Because the co-information is directly related to the
interaction information for systems with any number of
variables, we will forgo presenting results from the co-
information. The co-information has also been referred to as
the generalized mutual information (Matsuda 2000).

4.3 Total correlation

The interaction information finds its conceptual base in
extending the idea of the mutual information as the infor-
mation gained about a variable when the other variable
is known. Alternatively, we could extend the idea of the
mutual information as the Kullback-Leibler divergence
between the joint distribution and the independent model. If
we do this, we arrive at the total correlation (TC) introduced
by Watanabe (Watanabe 1960). It is given by:

: p(X)
TC(S) = 1 "
(S) )%P(x) Og<p(x1)p(x2)...p(xn)> (13)
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In Eq. (13), X is a vector containing individual states of
the X variables. As with the interaction information, the
total correlation also treats all input variables equally, thus
it measures interactions among a group of variables.

The total correlation can also be written in terms of
entropies as:

re(s) = Z H(X;) | — H(S) (14)

X;eS

In this form, the total correlation has been referred to as
the multi-information (Schneidman et al. 2003b), the spa-
tial stochastic interaction (Wennekers and Ay 2003), and the
integration (Tononi et al. 1994; Sporns et al. 2000). Using
Eq. (2), the total correlation can also be written using a
series of mutual information terms (see Appendix A for
more details):

TC(S) = I(X1; X2) + (X1, X2; X3)
+. Xy, X Xn) (15)

4.4 Dual total correlation

After the total correlation was introduced, a measure with
a similar structure, called the dual total correlation (DTC),
was introduced by Han (Han 1975; 1978). The dual total
correlation is given by:

pTCS) = | Y H(S/X) | — (= DH(S) (16)
X;eS

In Eq. (16), S/ X; is the set S with X; removed and n is
the number of X variables in S. As with the total correla-
tion, the dual total correlation also measures the interactions
within a group of variables and treats all input variables
equally.

The dual total correlation can also be written as
(Abdallah and Plumbley 2010):

DTC(S) = H(S) — Z H(Xi|S/Xi) a7
X,’ES

The dual total correlation calculates the amount of
entropy present in S beyond the sum of the entropies for
each variable conditioned upon all other variables. The dual
total correlation has also been referred to as the excess
entropy (Olbrich et al. 2008) and the binding information
(Abdallah and Plumbley 2010). Using Egs. (2), (14), and
(16), the dual total correlation can also be related to the total
correlation by (see Appendix B for more details):

pTCS) = | Y 1(S/Xi: X0) | - TC(S) (18)
X;eS

@ Springer

4.5 Al

A distinct information measure, called A/, was introduced
by Nirenberg and Latham (Nirenberg et al. 2001; Latham
and Nirenberg 2005). It was introduced to measure the
importance of correlations in neural coding. For the pur-
poses of this paper, we can apply Al to the following
situation: consider some set of X variables (call this set §).
The values of the variables in S are related in some way
to the value of another variable (call it Y). In Nirenberg
and Latham’s original work, the X variables were signals
from neurons and the Y variable was the value of some
stimulus variable. A/ compares the true probability distri-
butions associated with these variables to one that assumes
the X variables act independently (i.e., there are no corre-
lations between the X variables beyond those that can be
explained by Y). If these distributions are similar, then it can
be assumed that there are no relevant correlations between
the X variables. If, on the other hand, these distributions are
not similar, then we can conclude that relevant correlations
are present between the X variables.

The independent model assumes that the X variables act
independently, so we can form the probability for the X
states conditioned upon the Y variable state using a simple
product:

pinaGly) =[] pxily) (19)

Then, the conditional probability of the Y variable on the X
variables can be found using Bayes’ theorem.

PindX1y)p(y)

= 20
Dind (X) 0

Pind(¥IX) =
The independent joint distribution of the X variables is
given by:

Pind() =) pinaF1y)p(y) @1

yey

Then, A1 is given by the weighted Kullback-Leibler dis-
tance between the conditional probability of the Y variable
on the X variables for the independent model and the actual
conditional probability of the same type.

AIS: V) =Y p(D) Y p(yIT) log (M) 22)

=T Pina (V1)

About A7, Nirenberg and Latham say (Latham and
Nirenberg 2005), “[s]pecifically, Al is the cost in yes/no
questions for not knowing about correlations: if one were
guessing the value of the Y variable based on the X vari-
ables, X, then it would take, on average, AI more questions
to guess the value of Y if one knew nothing about the cor-
relations than if one knew everything about them [Variable



J Comput Neurosci (2014) 36:119-140

125

names changed to match this work].” Unlike the interaction
information, A/ is restricted to be non-negative (Latham
and Nirenberg 2005).

Note that, because it measures interactions between a
group of variables and another variable, A/ is fundamen-
tally different from the multivariate information measures
discussed so far. The previous measures treat all of the
variables equally and are designed to measure interactions
among all of the variables, whereas Al and the follow-
ing information measures treat the X variables and the Y
variable separately. Because of this, Al and the following
information measures are differently situated in their ability
to assess the degree to and manner in which the X variables
in S encode the Y variable.

4.6 Redundancy-synergy index

Another multivariate information measure was introduced
by Chechik et al. 2001. This measure was originally referred
to as the redundancy-synergy index (RSI) and it was created
as an extension of the interaction information. It is given
by:

RSI(S;Y)=1(S;Y) — Z 1(X:;Y) (23)
X;eS

The redundancy-synergy index is designed to be maxi-
mal and positive when the variables in S are purported to
provide synergistic information about Y. It should be nega-
tive when the variables in § provide redundant information
about Y. Notice that, like A7, the redundancy-synergy index
measures the interactions between a group of variables and
another variable, except when S contains two variables, in
which case the redundancy-synergy index is equal to the
interaction information. The redundancy-synergy index has
been referred to as the SynSum (Globerson et al. 2009),
the WholeMinusSum synergy (Griffith and Koch 2012), and
the negative of the redundancy-synergy index has also been
referred to as the redundancy (Schneidman et al. 2003b).

4.7 Varadan’s synergy

Yet another multivariate information measure was intro-
duced by Varadan et al. (2006). In the original work, this
measure was referred to as the synergy, but to avoid confus-
ing it with other measures, we will refer to this measure as
Varadan’s synergy (VS). It is given by:

VS(S;Y)=1(S;Y) — max Z 1(Sj;Y) (24)
i
In Eq. (24), S; refers to the possible sub-sets of S and the

maximum seeks the partition of S that produces the largest
sum of mutual informations between the subsets of S and

Y. So, for instance, if § = {X1, X2, X3}, Varadan’s synergy
would be given by:

VS(S: Y) = I(S: Y)
I(X1;Y)+1(X2, X3;Y)
—max I(X2;Y)+1(X1,X3;Y) 25)
I(X3;Y)+1(X1,X2;Y)
IX;Y)+1(X2;Y)+1(X3:Y)

Similar to the interaction information, when Varadan’s
synergy is positive, the variables in S are said to provide
synergistic information about Y, while when Varadan’s syn-
ergy is negative, the variables in S are said to provide redun-
dant information about Y. Like the redundancy-synergy
index, Varadan’s synergy measures the interactions between
a group of variables and another variable, except when S
contains two variables, in which case Varadan’s synergy is
equal to the interaction information.

4.8 Partial information decomposition

Finally, we will examine the collection of information mea-
sures introduced by Williams and Beer in the partial infor-
mation decomposition (PID) (Williams and Beer 2010).
(See (James et al. 2011; Flecker et al. 2011; Griffith and
Koch 2012; Lizier et al. 2013) for recent works involving
the partial information decomposition). The partial infor-
mation decomposition is a method of dissecting the mutual
information between a set of variables S and one other vari-
able Y into non-overlapping terms. These terms quantify the
information provided by the set of variables in S about Y
uniquely, redundantly, synergistically, and in mixed forms.
Thus, the partial information decomposition measures the
interactions between a single variable and a group of
variables.

The partial information decomposition has several poten-
tial advantages over other measures. First, it produces only
non-negative results, unlike the interaction information, the
redundancy-synergy index, and Varadan’s synergy. Second,
it treats synergy and redundancy as conceptually differ-
ent quantities that can be measured simultaneously in an
interaction, while the interaction information and A/ com-
bine synergy and redundancy to each produce one value.
Third, the partial information decomposition measures the
interactions between the Y variable and individual mem-
bers and subsets of S, unlike the other measures that treat
the X variables together. However, unlike the other mea-
sures, the partial information decomposition produces many
terms, the number of which diverges quickly with increased
number of X variables, and these terms can be difficult to
interpret.

For the sake of brevity, we will not describe the entire
partial information decomposition here, but we will describe

@ Springer



126

J Comput Neurosci (2014) 36:119-140

the case where § = {Xi, X»}. A description of the gen-
eral case can be found in Williams and Beer’s original work
(Williams and Beer 2010). The relevant mutual informa-
tions are equal to sums of the partial information terms.
For the case of two X variables, there are only four pos-
sible terms. Information about Y can be provided uniquely
by each X variable, redundantly by both X variables, or
synergistically by both X variables together. Written out,
the relevant mutual informations are given by the following
sums:

(X1, X2;Y) = Synergy(Y; X1, X2) + Unique(Y; X1)
+ Unique(Y; X2)
+ Redundancy(Y; X1, X2) (26)

1(X1;Y)=Unique(Y; X1) + Redundancy(Y; X1, X»)
(27)

1(X5;Y) =Unique(Y; X2) + Redundancy(Y; X1, X2)
(28)
The relevant mutual information values can be calculated
easily. As described by Williams and Beer, the redundancy
term is equal to a new information expression: the minimum
information function. This function attempts to capture the
intuitive view that the redundant information for a given
state of Y is the information that is contributed by both
X variables about that state of Y (consult Williams and
Beer’s original work (Williams and Beer 2010) for details
and further motivation). The minimum information function
is related to the specific information (DeWeese and Meister
1999).# The specific information is given by:

1 1
Lspec(y; X) = [ — =1
pec (3 X) Zp(xly)[0g<p(y)> Og(p(yIX)>]

xeX
(29)

In Eq. (29), the specific information quantifies the amount
of information provided by X about a specific state of the Y
variable.

The minimum information can then be calculated by
comparing the amount of information provided by the dif-
ferent X variables for each state of the Y variable considered
individually.

Inin(Y; X1, X2) = Z P(Y)minx,- ]spec(y; X;) (30)
yey

The minimum in Eq. (30) is taken over each X vari-
able considered separately. As described by Williams

41t should be noted that DeWeese and Meister refer to the expression
in Eq. (29) as the specific surprise.
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and Beer, the minimum information is equal to the
redundancy:

Redundancy(Y; X1, X2) = Inin(Y; X1, X2) (31)

Note, there is a subtle but crucial difference between the
minimum information function and the idea that the redun-
dancy is the information contributed by both X variables.
The minimum information is the average minimum amount
of information about Y that can be obtained from any of
the X variables. See Section 5.3 for an example of this
distinction.

Once the redundancy term is calculated via the mini-
mum information function, the remaining partial informa-
tion terms can be calculated with ease for the two X variable
case:

Synergy(Y; X1, X2)=1(Y; X1, Xo)—1(Y; X1)—1(Y; X2)
+ Redundancy(Y; X1, X2) (32)

Unique(Y; X1) = I(Y; X1) — Redundancy(Y; X1, X2)
(33)

Unique(Y; X») = I(Y; X2) — Redundancy(Y; X1, X2)
(34)

It should also be noted that the partial information

decomposition provides an explanation for negative interac-

tion information values (Williams and Beer 2010). To see

this, insert the partial information expansions in Egs. (26),

(27), and (28) into the mutual information terms in the

interaction information (8):

HI(X1; X3 Y) = 1(X1, X0, V) — (X1, Y) — (X2, Y)

Synergy(Y; X1, X2)

— Redundancy(Y; X1, X») 35)

Thus, the partial information decomposition finds that
a negative interaction information value implies that the
redundant contribution is greater in magnitude than the
synergistic contribution. Furthermore, the structure of the
partial information decomposition implies that synergis-
tic and redundant interactions are not mutually exclusive,
as was the case for the traditional interpretation of the
interaction information. Thus, according to the partial infor-
mation decomposition, there may be non-zero synergistic
and redundant contributions simultaneously.

Throughout the remainder of this article, we will label
the various terms in the partial information decomposition
in accordance with the notation used by Williams and Beer.
The term that has been interpreted as the synergy will be
referred to as TIg(Y; {12}) or PID synergy. The term that
has been interpreted as the redundancy will be labeled as
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Mg (Y; {1}{2}) or PID redundancy. The unique information
terms will be referred to as ITz(Y; {1}) and TTg(Y; {2}), or
simply as PID unique information.

When the partial information decomposition is extended
to the case where S = {X, X», X3}, new mixed terms are
introduced to the expansions of the mutual informations.
For instance, information can be supplied about Y redun-
dantly between X3 and the synergistic contribution from X
and X, (this term is noted as [Tz (Y; {12}{3})). In total, the
partial information decomposition contains 18 terms when
S contains three variables. To aide with the visualization of
the partial information terms, Williams and Beer introduced
partial information diagrams. The diagrams for the two and
three X variable cases are shown in Figs. 1 and 2. The vari-
ous synergy terms in the partial information decomposition
have been referred to as S, (Griffith and Koch 2012).

For the three X variable case, it can be shown that the
interaction information between Y and the X variables con-
tained in § is related to the partial information terms by the
following equation (Williams and Beer 2010):

TI(Y; X15 X23 X3) = TR(Y; {123D)+ TR (Y5 {TH2H3D)
—Ig(Y; {1}{23) —Ir(Y; {2}{13})
—Mg(Y; {3H{12) —Tr(Y; {12}{13})
—Ig(Y; {12423}) — IR (Y; {13}{23})
—2Ip (Y {12{13}{23})
(36)
From Eq. (36), we can see that the four-way interaction
information is related to the partial information decomposi-
tion via a complicated summation of terms.

4.9 Additional methods

Beyond the measures discussed so far, additional methods
have been proposed to measure the synergy and redundancy.
Globerson et. al. introduced the minimum information prin-
ciple and used it to develop a synergy measure (Globerson
et al. 2009). Also, Griffith and Koch recently introduced a
new synergy measure (Griffith and Koch 2012). Unlike the

I(Y:X1,X5)

I(Y;Xy) I(Y;X3)

Fig. 1 Two variable partial information diagram. Figure taken from
work by Williams and Beer with the authors’ permission (Williams
and Beer 2010)

1(Y35X1,X2,X3)

I(Y;Xy)
I(Y;X5,X3)

1(Y5X4,X3)

1(Y;X1,X2)

Fig. 2 Three variable partial information diagram. Figure taken from
work by Williams and Beer with the authors’ permission (Williams
and Beer 2010)

measures discussed so far, these additional methods are iter-
ative and do not, to our knowledge, produce closed form
solutions. Given their iterative nature, these measures may
prove more computationally costly in comparison to the pre-
viously discussed information measures, especially when
examining the interactions between many variables. For the
sake of simplicity, we will not apply these methods to the
following example systems.

Besides these methods, information geometry (Amari
2001) has also been used to examine neural networks
(Ohiorhenuan and Victor 2011), as have various maximum
entropy methods (Schneidman et al. 2006; Shlens et al.
2006; Tang et al. 2008). Finally, L. Martignon et al. dis-
cussed several methods, including the interaction informa-
tion and methods similar to the maximum entropy methods
discussed above to examine higher-order correlations in
neural systems (Martignon et al. 2000). Though these meth-
ods also employ information theory, they are substantially
different from the information theoretic analyses that can be
performed with the measures discussed so far. Briefly, max-
imum entropy approaches can be used to indicate when a
model based on pairwise correlations is insufficient to fit the
probability distribution of network-wide correlated states
(Yu et al. 2011; Fairhall et al. 2012; Shimazaki et al. 2012).
Although information theory is often used to quantify the
quality of this fit, the interactions involving three or more
neurons are not in general quantified in terms of synergy,
redundancy, etc. In comparison, the information measures
discussed so far seek to directly measure interactions of
varying orders on a variable-group by variable-group basis.
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So, we will not discuss these alternative methods, but the
reader is encouraged to explore them to see if they would
better address his or her experimental question.

In addition to the information measures and information
analysis techniques discussed so far, Schreiber introduced
the transfer entropy to measure the information transfer
between quantities that vary through time (Schreiber 2000).
Because transfer entropy is focused on time series analysis
and relationships between two variables, we have chosen not
to apply it to the following example systems. It should be
noted that the transfer entropy can be expressed in terms of
the partial information decomposition (Williams and Beer
2011), transfer entropy has been applied to many systems
(Marschinski and Kantz 2002; Lungarella and Sporn 2006;
Honey et al. 2007; Ito et al. 2011; Lizier et al. 2011;
Vicente et al. 2011), and that transfer entropy better cap-
tures information transfer in time series compared to time
lagged mutual information and other methods (Schreiber
2000; Garofalo et al. 2009).

5 Example systems

We will now apply the multivariate information measures
discussed above to several simple systems in an attempt to
understand their similarities, differences, and uses. These
systems have been chosen to maximize the contrast between
the information measures, but many other systems exist for
which the information measures produce identical results.

5.1 Examples 1-3: two-input Boolean logic gates

The first set of examples we will consider are simple
Boolean logic gates. These logic gates are well known
across many disciplines and offer a great deal of simplicity.
The results presented in Table 1 highlight some of the com-
monalities and disparities between the various information
measures. It should be noted that, due to the simple struc-
ture of the Boolean logic gates, the total correlation is equal
to the mutual information. Also, due to the fact that only
two-input Boolean logic gates are being considered, the
redundancy-synergy index and Varadan’s synergy are equal
to the interaction information. Additional examples will
highlight differences between these information measures.

All of the information measures provide a similar result
for Example 1 (XOR-gate) (with the exception of the
dual total correlation, see below). The interaction informa-
tion, A/, the redundancy-synergy index, Varadan’s synergy,
and the partial information decomposition all indicate that
the entire bit of information between Y and {X{, X»} is
accounted for by synergy. We might expect this result
because, to know the state of Y for an XOR-gate, the state
of both X and X, must be known.
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Table 1 Examples 1 to 3: two-input Boolean logic gates

Ex. 1 Ex.2 Ex. 3

XOR X1 AND
p(x1,x2,y) X1 X2 y y y
1/4 0 0 0 0 0
1/4 1 0 1 1 0
1/4 0 1 1 0 0
1/4 1 1 0 1 1
1(X1;Y) 0 1 0.311
1(X2;Y) 0 0 0.311
I(Xy, X2, Y) 1 1 0.811
TI(Xy1; X2;Y) 1 0 0.189
TC(Xy;X2:Y) 1 1 0.811
DTC(Xy; X2;Y) 2 1 1
AI(X1, X23Y) 1 0 0.104
RSI(X1, X2;Y) 1 0 0.189
VS(X1, X2:Y) 1 0 0.189
OrY; {1H2) 0 0 0.311
Mg(Y; {1}) 0 1 0
Mg(Y; {2}) 0 0 0
Mg(Y; {12}) 1 0 0.5

XOR-gate: all information measures produce results that indicate the
presence of synergy. Xi-gate: the partial information decomposition
succinctly identifies a relationship between X; and Y. AND-gate:
the partial information decomposition identifies both synergistic and
redundant interactions. The interaction information finds only a syner-
gistic interaction. A/ identifies the importance of correlations between
X1 and X

The results for Example 2 (X;-gate) demonstrate the
potential utility of the partial information decomposition.
The unique information term from X is equal to one bit,
thus indicating that the X; variable entirely and solely
determines the state of the output variable. This result is
confirmed by the truth-table. This result can also be seen
by considering the values of the other measures together
(for instance, the three mutual information measures), but
the partial information decomposition provides these results
more succinctly.

More significant differences among the information mea-
sures appear when considering Example 3 (AND-gate). The
partial information decomposition produces the result that
0.311 bits of information are provided redundantly and 0.5
bits are provided synergistically. Since each X variable pro-
vides the same amount of information about each state of ¥
(see Eq. (30)), the partial information decomposition finds
that all of the mutual information between each X variable
individually and the Y variable is redundant. As a result of
this, no information is provided uniquely, and subsequently,
the entirety of the remaining 0.5 bits of information between



J Comput Neurosci (2014) 36:119-140

129

Y and {X1, X»} must be synergistic. From this, we can see
in action the fact that the partial information decomposition
emphasizes the amount of information that each X variable
provides about each state of Y considered individually.

The interaction information, and by extension the
redundancy-synergy index and Varadan’s synergy, are lim-
ited to returning only a synergy value of 0.189 bits for the
AND-gate. This value is produced because the mutual infor-
mation between Y and { X, X} contains an excess of 0.189
bits beyond the sum of the mutual informations between
each X variable individually and the Y variable. So, here we
can see in action the interpretation of the interaction infor-
mation as the amount of information provided by the X
variables taken together about Y, beyond what they provide
individually. Also, the AND-gate allows us to see the rela-
tionship between the interaction information and the partial
information decomposition as expressed by Eq. (35).

The value of AT for the AND-gate can be elucidated by
examining the values of the conditional probability distri-
butions that are relevant to the calculation of AI (Table 2).
From these results, it is clear that if we use the indepen-
dent model, and we are presented with the state x; = 1
and x» = 1, we would conclude that there is a one-quarter
chance that y = 0 and a three-quarters chance that y = 1.
If we use the actual data, then we know that, for that spe-
cific state, y must equal 1. This example points to a subtle,
but critical difference between Al and the other multivariate
information measures. Namely, the other information mea-
sures are concerned with discerning the interactions among
the variables in the situation where you know the values of
all the variables simultaneously. On the other hand, A7 is
concerned with comparing that situation to one where only
the probability distributions of the variable pairs Y and X;
are known and the X; variables are assumed to be indepen-
dent (i.e. the independent model described by Eq. (19) (see
Section 5.2 for further discussion of this topic).

The values of the dual total correlation for the XOR-
gate example in Table 1 demonstrate a crucial differ-
ence between the dual total correlation and the other

Table 2 Values of conditional probabilities used to calculate A/ for
the AND-gate

y X1 X2 Dind (¥ | X1, X2) p(y | x1,x2)
0 0 0 1 1
0 1 0 1 1
0 0 1 1 1
0 1 1 0.25 0
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 0.75 1

multivariate information measures. Namely, the dual total
correlation does not differentiate between the X and Y vari-
ables. So, dependencies between all variables are treated
equally. In the case of the XOR-gate, the entropy of any vari-
able conditioned on the other two is zero. However, the joint
entropy between all variables is 2 bits, so the dual total cor-
relation is equal to 2 bits. Clearly, this result is greater than
1 (X1, X2; Y) for this example. So, if we assume the synergy
and redundancy are some portion of 7 (X1, X3; Y), the dual
total correlation cannot be the synergy or the redundancy.
However, this result is not surprising given the fact that, if
we assume the synergy and redundancy are some portion
of I(X1, X3;Y), the synergy and redundancy require some
differentiation between the X variables and Y variables.
Since the dual total correlation does not incorporate this dis-
tinction, we should expect that it measures a fundamentally
different quantity (see Section 5.4 for further discussion of
this topic).

5.2 Example 4: AI is not bound by I

Another relevant example for A/ is shown in Table 3. The
crucial point to draw from this example is that A/ can be
greater than /(X 1, X»; Y). This appears to be in conflict
with the intuitive notion of synergy as some part of the
information the X variables provide about the Y variable.
Why, in this case, Al is greater than I (X, X»; Y) is not

Table 3 Example 4. For this system, Al (X, X5;Y) is greater than
1(X1, X2; Y). Schneidman et. al. also present an example that demon-
strates that A7 (X1, X5; Y) isnotbound by 7 (X1, X5; Y) (Schneidman
et al. 2003a)

Ex. 4
p(x1, x2,y) X X2 y
1/10 0 0 0
1/10 1 1 0
2/10 0 0 1
6/10 1 1 1
1(X1:Y) 0.0323
I(X2;Y) 0.0323
I(Xy, X2;Y) 0.0323
II1(X1; X2:Y) —0.0323
TC(X1; X203 Y) 0.9136
DTC(Xy; X2;Y) 0.8813
AI(Xy, X2;Y) 0.0337
RSI(X1, X2;Y) —0.0323
VS(X1, X2:Y) —0.0323
Mg (Y5 {1}{2hH 0.0323
Mg(Y; {1}) 0
Mg(Y;{2}) 0
MR(Y; {12}) 0
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immediately clear. To better understand this result, we
can examine the difference between Al and (X, X5;7Y).
Using Egs. (5), (20), and (22), this difference can be
expressed as:

1(S;Y) — AI(S;Y) = Z

XeS,yeY

(v, %) log (pind(le)> 37)
Pind (X)

The quantity expressed on the RHS of Eq. (37), though
similar in form, is not a mutual information. Based on
the example in Table 3 and the examples in Table 1, this
quantity can be positive or negative. Schneidman et. al.
further explore this and other noteworthy features of A/
(Schneidman et al. 2003a). Fundamentally, A1 is a compar-
ison between the complete data and an independent model
(as expressed in Eq. (19)). As Schneidman et. al. note, alter-
native models could be chosen for the purpose of measuring
the importance of correlations between the X variables in
the data. Perhaps the best way to conceptualize the result
from Table 3 is to note that in this case the information
cost of assuming the X variables act independently of each
other on Y (AI) is greater than the information cost of
assuming Y is independent of the X variables (the mutual
information). We wish to emphasize that Al can provide
useful information about a system, but that it measures a
fundamentally different quantity in comparison to the other
multivariate information measures.

5.3 Example 5: amount vs. content

The example shown in Table 4 highlights some interesting
differences between the information measures, especially
regarding the partial information decomposition. Results
from the partial information decomposition indicate that 1
bit of information about Y is provided redundantly by X
and X, while 1 bit is provided synergistically. This situation
is similar to the AND-gate above. Each X variable provides
1 bit of information about Y, but both X variables provide
the same amount of information about each state of Y. So,
the partial information decomposition concludes that all of
the information is redundant. It should be noted that this is
the case despite the fact that X| and X, provide informa-
tion about different states of Y. X1 can differentiate between
y=0and y = 2ontheonehandand y = 1l and y = 3
on the other, while X; can differentiate between y = 0 and
y = 1 on the one hand and y = 2 and y = 3 on the other.
Even though the X variables provide information about dif-
ferent states of Y, the partial information decomposition is
blind to this distinction and concludes, since the X vari-
ables provide the same amount of information about each
state of Y, that their contributions are redundant. Because all
of the mutual information between each X variable consid-
ered individually is taken up by redundant information, the
partial information decomposition concludes there is no
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Table 4 Example 5: Y obtains a different state for each unique
combination of X and X,

Ex.5

p(x1,x2,) X1 X2 y

1/4
1/4
1/4
1/4

- o = O
—_ = O O

W N = O

I(X1;Y)
1(X2;Y)

(X1, X2;Y)
II(X1; X23Y)
TC(Xy;X2;Y)
DTC(Xy; X2;Y)
AI(X1, X23Y)
RSI(X1, X2;Y)
VS(X1, X2;Y)
HeY; {142
Mg(Y; {1})
Mg(Y; {2})
Mg(Y; {12})

—_ 0 O = O O O NNO N ==

The partial information decomposition indicates the presence of
redundancy because the X variables provide the same amount of infor-
mation about each state of Y, despite the fact that the X variables
provide information about different states of Y. The interaction infor-
mation and A/ provide null results. Griffith and Koch also discuss this
example in relation to multivariate information measures (Griffith and
Koch 2012). In this example, the Y variable can also be thought of as
a joint variable {X1, X2}

unique information and, thus, the remaining 1 bit of infor-
mation must be synergistic.

Example 5 demonstrates the conditions for null results
from the interaction information and A/. When consider-
ing the relationship between one of the X variables and Y,
we see that knowing the state of the X variable reduces the
uncertainty about Y by 1 bit in all cases. However, knowing
both X variables only provides 2 bits of information about
Y. So, the interaction information must be zero because no
additional information about Y is gained or lost by know-
ing both X variables together compared to knowing them
each individually. Similarly, A7 must be zero because the
knowledge of the state of X and X, simultaneously does
not provide any additional knowledge about Y compared to
the independent models for the relationships between each
X variable and Y.

5.4 Example 6: zero target entropy

The example shown in Table 5 demonstrates a significant
feature of the total correlation. Even when no information is
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Table 5 Example 6. All information measures, with the exceptions of
the total correlation and the dual total correlation, are zero

Ex. 6
p(x1,x2,y) x| X2 y

12 0 0 0
1/2

(=)

I(Xy;Y)
I(X2;Y)

I(Xy, X2;Y)
I1(X1; X2;Y)
TC(X1; X2; Y)
DTC(X1; X2, Y)
AI(X1, X2;Y)
RSI(Xq1, X2, Y)
VS(X1, X2:Y)
Mg(Y; {1}{2hH
Mg (Y; {1})

Mg (Y;{2})
Mg(Y; {12})

S O O O O O O = = O O O O

The total correlation and the dual total correlation produce non-zero
results because they detect interactions between the X variables, while
the other measures that differentiate between the X variables and the
Y variable are zero

passing to one of the variables considered, the total correla-
tion and the dual total correlation can still produce non-zero
results if interactions are present between other variables
in the system. This result can be clearly understood using
the expression for the total correlation in Eq. (15) and the
expression for the dual total correlation in Eq. (18). The
total correlation sums the information passing between vari-
ables from the smallest scale (two variables) to the largest
scale (n variables). It will detect relationships at all lev-
els and it is unable to differentiate between those levels.
The dual total correlation compares the total correlation to
the amount of information passing between each individ-
ual variable and all other variables considered together as a
single vector valued variable. As with the dual total correla-
tion, the total correlation does not differentiate between the
X and Y variables, unlike several of the other information
measures.

In this case, Y has no entropy, so all information mea-
sures that describe interactions between the X variables
and the target variable Y (i.e., all of the other information
measures considered here) are zero. This is expected since
all of the other information measures are either explicitly
focused on the relationship between the X variables and
the Y variable or only focus on interactions that involve all
variables.

5.5 Examples 7 and 8: three-input Boolean logic gates

The three-input Boolean logic gate examples shown in
Table 6 allow for a comparison between the interaction
information, the redundancy-synergy index, Varadan’s syn-
ergy, and the partial information decomposition. Example
7 (three-way XOR-gate) produces similar results to the
XOR-gate shown in Table 1. All of the information mea-
sures indicate the presence of a synergistic interaction or
an interaction where the correlations between the X vari-
ables provide additional information. The partial informa-
tion decomposition is able to localize the synergy to an
interaction between all three X variables.

Significant differences appear between the information
measures when an extraneous X3 variable is added to a basic
XOR-gate between X; and X, (Example 8, X|X>XOR-
gate). In this case, the interaction information is zero
because there is no synergy present between all three X

Table 6 Examples 7 and 8: three-input Boolean logic gates

Ex.7 Ex. 8
3XOR  X1X>XOR
px1, x2,y) Xp X2 X3y y
1/8 0 0 0 0 0
1/8 1 0 0 1 1
1/8 0 1 0 1 1
1/8 1 1 0 0 0
1/8 0 0 1 1 0
1/8 1 0 1 0 1
1/8 0 1 1 0 1
1/8 1 1 1 1 0
1(X1;Y) 0 0
I(X2;Y) 0 0
1(X3;Y) 0 0
1(X1, X2, X3, Y) 1 1
I1(X1; X2; X3, Y) 1 0
TC(X1; X2; X3, Y) 1 1
DTC(X1; X2; X3, Y) 3 2
Al(X1, X2, X33 Y) 1 1
RSI(X1, X2, X3:;Y) 1 1
VS(X1, Xo, X3;Y) 1 0
MR(Y; {12} 0 1
ITr(Y; {123}) 1 0

All partial information decomposition terms not shown in the table are
zero. 3XOR: Three-way XOR-gate. All information measures produce
consistent results. X X,XOR: XOR-gate involving only X and X».
The redundancy-synergy index identifies a synergistic interaction and
AT identifies the importance of correlations between the X variables.
The partial information decomposition also identifies the variables
involved in the synergistic interaction. The interaction information and
Varadan’s synergy do not identify a synergistic interaction
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variables and the Y variable. This is despite the fact that
the interaction information indicated synergy was present
for the two X variable XOR-gate. Thus, we can see that
the interaction information focuses only on interactions
between all of the X variables and the Y variable. A sim-
ilar result is observed with Varadan’s synergy. Despite the
fact that it indicated the presence of synergy in the two
X variable XOR-gate, Varadan’s synergy does not indicate
synergy is present in this logic gate because it also focuses
only on interactions between all of the X variables and the
Y variable. Both the redundancy-synergy index and the par-
tial information decomposition return results that indicate
the presence of synergy between the X variables and the Y
variable, but only the partial information decomposition is
able to localize the synergy to the X and X, variables.

5.6 Examples 9 to 13: simple model networks

In an effort to discuss results more directly applicable to
several research topics, we will now apply the multivari-
ate information measures to several variations of a simple
model network. The general structure of the network is
shown in Fig. 3. The network contains three nodes, each of
which can be in one of two states (0 or 1) at any given point
in time. The default state of each node is 0. At each time
step, there is a certain probability, call it p,, that a given
node will be in state 1. The probability that a given node
is in state 1 can also be increased if it receives a connec-
tion from another node. This driving effect is noted by py,
for the connection from X to Y, pj for the connection
from X to X, and p», for the connection from X5 to Y.
All states of the network are determined simultaneously and
are independent of the previous states of the network. (See
Appendix C for further details regarding this model.)

For this simple system, we will discuss five simple com-
binations of p,, pi1y, p12, and pz,. We chose to present
these combinations of probabilities because they span inter-
esting and often times difficult to analyze topologies. Also,
we chose to present combinations with small probability

P12

Fig. 3 Structure of model network used for Examples 9 to 13
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values because many experiments in neuroscience are fo-
cused on events that happen relatively infrequently. How-
ever, the system can be easily modified to include any possi-
ble combinations of probabilities. The information theoretic
results for these examples are presented in Table 7.

Example 9 represents a system where the X nodes inde-
pendently drive the Y node. Similarly to Example 5, the
partial information decomposition indicates that the infor-
mation from X and X is entirely redundant and synergis-
tic. This result is somewhat counter intuitive because the X
nodes act independently. Again, this is due to the structure
of the minimum information in Eq. (30). Each X variable
provides the same amount of information about each state
of Y, so the partial information decomposition returns the
result that all of the information provided by each X variable
about Y is redundant. The interaction information returns
a result that indicates the presence of synergy, though the
magnitude of this interaction is less than the magnitudes of
the synergy and redundancy results from the partial infor-
mation decomposition. Note that this is the only network for
which the interaction information indicates the presence of
synergy.

Example 10 is similar to Example 9 with the exception
that X1 now also drives X;. Several interesting results are
produced for this example. For instance, the total correla-
tion and dual total correlation are significantly elevated in
comparison to the other examples. In this example, there is

Table 7 Examples 9 to 13: simple model network. All information
values are in millibits

Ex.9 Ex. 10 Ex. 11 Ex. 12 Ex. 13
Diagram A a o 60 0o

g © o0
DPr 0.02 0.02 0.02 0.02 0.02
P12 0 0.1 0.1 0.1 0.1
Dy 0.1 0.1 0 0.1 0
D2y 0.1 0.1 0.1 0 0
1(X1;Y) 3.061 3.498 0.053 3.225 0
1(X2;Y) 3.061 3.801 3.527 0.050 0
1(X1,X2;Y) 6.239 6.750 3.527 3.225 0
11(X1; X2;Y) 0.117 —0.548 —0.053 —-0.050 O
TC(X1; X2;Y) 6.239 9.975 6.752 6.450 3.225
DTC(X1; X2;Y) 6.356 9.427 6.698 6.400 3.225
Al (X1, X2 Y) 0.080 0.499 0.064 0.059 0
RSI(X1, X2;Y) 0.117 —0.548 —0.053 —-0.050 O
VS(X1, X2, Y) 0.117 —0.548 —-0.053 —-0.050 O
Me(Y: {1}{2))  3.061 3498 0053 0050 0
MR(Y: {1}) 0 0 0 3175 0
MR(Y: {2)) 0 0303 3473 0 0
MR(Y: {12}) 3178 2950 0 0 0
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the maximum amount of interactions between all nodes. So,
this result agrees with expectations because the total cor-
relation and dual total correlation reflect the total amount
of interactions at all scales between all variables. Also, A/
obtains its highest value for this example because the actual
data and the independent model from Eq. (19) that is used
in the calculation of A7 are more dissimilar due to the
interactions between X1 and X;. For Example 9, Al has a
lower value because there are no interactions between X
and X», so the independent model from Eq. (19) that is
used in the calculation of A/ is more similar to the actual
data. Interestingly, the partial information decomposition
does not indicate the presence of unique information from
X1, despite the fact that X is directly influencing Y. As
with example 9 above, the partial information decomposi-
tion returns the result that all of the information X provides
about Y is redundant. Thus, based on the structure of the
minimum information function, there is no state of Y for
which X provides more information than X». In this case,
this result is more intuitive because X; also drives X;. The
interaction information returns a significantly larger magni-
tude result for this example. This is intuitive given the fact
that X is driving X, and that both X variables are driving
the Y variable. However, it should be noted that the mag-
nitude of the interaction information is significantly less
than the magnitude of the synergy and redundancy from
the partial information decomposition. Also, the interac-
tion information result implies the presence of redundancy,
unlike Example 9.

Example 11 represents a common problem case when
attempting to infer connectivity based solely on node activ-
ity. Node X drives X7, which in turn drives Y. If the activity
of X5 is not known, it would appear that X is driving Y
directly. The partial information decomposition returns the
result that any information provided by X about Y is redun-
dant and that the vast majority of the information provided
by X1 and X, about Y is unique information from X;. Both
of these results appear to accurately reflect the structure of
the network.

Example 12 also represents a common problem case
when determining connectivity. Node X drives Y and X».
If the activity of X is not known, it would appear that X> is
driving Y, when, in fact, no connection exists from X, to Y.
Similarly to Example 11, the partial information decompo-
sition identifies the majority of the information from X and
X» about Y as unique information from X and the remain-
ing information as redundant. Again, these results appear to
accurately reflect the structure of the network. However, it
should be noted that these results are numerically similar to
the results from Example 11 with X and X» interchanged.
Thus, it may be the case that the partial information
decomposition may not be able to differentiate between
situations like Examples 11 and 12 in some scenarios.

The final example (13) is similar to Example 6 above.
In this case, no connections exist from X; or X, to Y, but
X drives X». Almost all of information measures indicate
a lack of information transmission. However, the total cor-
relation and the dual total correlation pick up the interaction
between X and X,. The values of the total correlation and
the dual total correlation increase as the number of connec-
tions in the model increase. This, again, demonstrates the
fact that the total correlation and the dual total correlation
measure interactions between all variables at all scales.

5.7 Analysis of dissociated neural culture

We will now present the results of applying the information
measures discussed above to spiking data from a dissoci-
ated neural culture. We wish to emphasize that we were not
attempting to answer any specific experimental question.
Rather, we simply hoped to illustrate one type of analysis
that is possible using these information measures.

The data we chose to analyze are described in Wagenaar
et al. and are freely available online (Wagenaar et al. 2006a).
The data contain multiunit spiking activity for each of 60
electrodes in the multielectrode array on which the disso-
ciated neural culture was grown. Specifically, we used data
from neural culture 2-2. All details regarding the production
and maintenance of the culture can be found in (Wagenaar
et al. 2006a). We analyzed recordings from eight points in
the development in the culture: days in vitro (DIV) 4, 7,
12, 16, 20, 25, 31, and 33. The DIV 16 recording was 60
minutes long, while all others were 45 minutes long.

For this analysis, the data were binned at 16 ms. The
probability distributions necessary for the computation of
the information measures were created by examining the
spike trains for groups of three non-identical electrodes. For
a given group of electrodes, one electrode was labeled the
Y electrode, while the other two were labeled the X and
X5 electrodes. Then, for all time steps in the spike trains,
the states of the electrodes (spiking or not spiking) were
recorded at time ¢ for the X and X electrodes and at time
t + 1 for the Y electrode. Next, by counting how many
times each state appeared throughout the spike train, the
joint probabilities p(y;+1, X1,1, X2,¢) were calculated, which
were then used to calculate the information measures dis-
cussed above. This process was repeated for each group of
non-identical electrodes. However, to avoid double count-
ing, groups with swapped X variable assignments were only
analyzed once. For instance, the group X = electrode 3, X»
= electrode 4, and Y = electrode 5 was analyzed, but the
group X = electrode 4, X, = electrode 3, and Y = elec-
trode 5 was not analyzed. In order to compensate for the
changing firing rate through development of the cultures, all
information values for a given group were normalized by
the entropy of the Y electrode.
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To illustrate the statistical significance of the information
measure values, we also created and analyzed a random-
ized data set from the original neural culture data for
each DIV. The randomization was accomplished by split-
ting each electrode spike train at a randomly chosen point
and swapping the two remaining pieces. By doing this,
the structure of the electrode spike train is almost entirely
preserved, but the temporal relationship between the elec-
trode spike trains is significantly disrupted. We wish to
emphasize that several alternative randomization schemes
exist (spike swapping, spike jittering, inter-spike interval
shuffling, etc.) and have been widely used in neuroscience,
including applications outside information theory (Louie

and Wilson 2001; Hatsopoulos et al. 2003; Beggs and Plenz
2004; Ikegaya et al. 2004; Rivlin-Etzion et al. 2006; Butts
et al. 2007; Madhavan et al. 2007; Rolston et al. 2007;
Wang et al. 2007; Fujisawa et al. 2008; Pazienti et al. 2008).
Furthermore, it is probably the case that each information
measure will behave differently under different randomiza-
tion schemes. Also, the effectiveness of a randomization
method is probably dependent on whether the information
measure treats all variables equally or if it measures the
interactions between a group of variables and another tar-
get variable. For instance, for (X, X»;Y) it would be
better to shift the X variables together to preserve their
joint probability distribution and only disrupt the temporal
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relationship between the X variables and the Y variable.
Similar allowances should be made for the other measures,
though this process may become significantly more com-
plicated for other measures. To our knowledge, no one has
thoroughly researched the effectiveness of these different
randomization methods for the information measures dis-
cussed herein. It is beyond the scope of this review to do so,
thus, for this illustration, we have chosen to use one random-
ization method for all information measures for the sake of
simplicity. However, researchers are cautioned to carefully
consider the effect different randomization methods may
have on different information measures when performing a
more rigorous comparison between information measures
applied to experimental data.

Following the randomization of the data for each DIV, for
each information measure, we logarithmically binned 5000
randomly chosen non-zero information values from all pos-
sible triplets of electrodes to obtain information value distri-
butions for the original data and for the shuffled data. Forty
bins were used to span the non-zero data, with the same bins
being used for both data sets. A Kolmogorov-Smirnov (KS)
test was then performed on the distributions to assess the
statistical significance of the information results.

The results of these analyses are presented in Figs. 4 and
5. The results shown in Fig. 4 indicate that at day 4 essen-
tially no information was being transmitted in the network
because all of the information values were not significantly
different from the randomized data. However, by day 7,
a great deal of information was being transmitted, as can
be seen by the peaks in mutual information (Fig. 4e) and
the total correlation (Fig. 4f). As the culture continued to
develop after day 7, most information measures decreased

PID Synergy vs. PID Redundancy

10° y
DIV 4
O biv? 7
DIV 12
— DIV 16
z DIV 20
T 0 { DIV25
~ 10" <& owat
> {$ DIV33
e :
<
°
c
=}
3
T 10}
)
a
6 -
10 _6 - V-4. _2 0
10 10 10 10

(PID Synergy) / H(Y)

Fig. 5 The balance of PID synergy and PID redundancy changed
during development. Each data point represents the information val-
ues for one group of electrodes (only 2 % of the data are shown to
improve clarity). Diamonds represent mean values for a given DIV for
all groups of electrodes

and then slowly increased to maxima on the last day, DIV
33. Interestingly, Al (Fig. 4f) showed an increase at day
7, but then a steady increase afterwards. The total correla-
tion (Fig. 4f) mimics the changes in the mutual information
(Fig. 4e), but because the total correlation measures the
total amount of information being transmitted among the X
and Y variables, it possessed higher values than the mutual
information.

The relationship between the interaction information
and the partial information decomposition was also illus-
trated through development. As the culture developed, the
PID synergy was larger than the PID redundancy. Then,
between days 31 and 33, the PID synergy became signif-
icantly smaller than the PID redundancy. In the interac-
tion information, this relationship was expressed by pos-
itive values through most of the culture’s development,
with the exception of large negative values at days 7
and 33. However, notice that groups of electrodes with posi-
tive and negative interaction information values were found
in each recording. To further investigate this relationship,
we plotted the distribution of PID synergy and PID redun-
dancy for groups of electrodes (Fig. 5). This plot shows that
the network contained groups of electrodes with slightly
more PID redundancy than PID synergy at day 7, but that,
after that point, the total amount of information decreased
and became more biased towards PID synergy at day 12.
From that point, the total amount of information increased
up to the last recording where the network was once again
biased towards PID redundancy. So, we can relate the results
from the partial information decomposition and the inter-
action information using Fig. 5 by noting that, while the
PID synergy and PID redundancy for a given group of elec-
trodes determines a points position in Fig. 5, the interaction
information describes how far that point is from the equilib-
rium line. Given the fact that many points in Fig. 5 are near
the equilibrium line, the partial information decomposition
finds that many groups of electrodes contain synergistic and
redundant interactions simultaneously. This feature would
be lost by only examining the interaction information.

Obviously, this analysis could be made significantly
more complex and interesting. For instance, the analysis
could be improved by including more data sets, vary-
ing the variable assignments, using different bin sizes,
using more robust methods to test statistical significance,
and so forth. However, based on this simple illustration,
we believe that it is clear that the information analysis
methods discussed herein could be used to address inter-
esting questions in this or other systems. For instance,
it may be possible to relate these changes through
development to previous work on changes in dissoci-
ated cultures through development (Kamioka et al. 1996;
Wagenaar et al. 2006a, 2006b; Pasquale et al.2008; Tetzlaff
et al.2010). Also, these information measures could be used
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to study the changes in synergy and redundancy through
development, as well as changes through development in the
amount of information being transferred among different
numbers of neurons.

6 Discussion

Based on the results from several simple systems, we were
able to explore the properties of the multivariate information
measures discussed in this paper. We will now discuss each
measure in turn.

The oldest multivariate information measure - the inter-
action information - was shown to focus on interactions
between all X variables and the Y wvariable using the
three-input Boolean logic gate examples. Furthermore,
the two-input AND-gate demonstrated how the interaction
information is related to the excess information provided
by both X variables about the Y variable beyond the total
amount of information those X variables provide about Y
when considered individually. Also, that example demon-
strated the relationship between the interaction information
and the partial information decomposition as shown in
Eq. (35). For the model network examples, the interaction
information had its largest magnitude when the interactions
were present between all three nodes. Also, for these exam-
ples, the interaction information indicated the presence of
synergy when both nodes X and X, drove Y, but not each
other (Example 9), while it indicated the presence of redun-
dancy when either node X or X; drove Y and X drove Y
(Examples 10 to 12). When the interaction information was
applied to data from a developing neural culture, it showed
changes in the type of interactions present in the network
during development.

In contrast to the interaction information, the total cor-
relation was shown to sum interactions among all variables
at all scales using Example 6. In other words, the value
of the total correlation for any system incorporates interac-
tions between groups of variables at all scales. This feature
was made apparent using the model network examples.
There, the total correlation increased with the number of
connections present in the network. Furthermore, the total
correlation is symmetric with regard to all variables con-
sidered, whereas the other information measures focus on
the relationship between the set of X variables and the Y
variable. When applied to the data from the neural cul-
ture, the total correlation and the mutual information both
showed increases in the total amount of information being
transmitted in the network through development.

The dual total correlation was found to be similar to the
total correlation in that both do not differentiate between
the X and Y variables. Also, like the total correlation,
the dual total correlation increased with the number of
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connections in the model network examples. The function
of the dual total correlation was also highlighted with the
XOR-gate example. There, we saw that the dual total corre-
lation compares the uncertainty with regards to all variables
to the total uncertainty that remains about each variable if
all the other variables are known.

Using the AND-gate, Al was shown to measure a subtly
different quantity compared to the other information mea-
sures. The other information measures seek to evaluate the
interactions between the X variables and the Y variable
given that one knows the values of all variables simultane-
ously (i.e. in the case that the total joint probability distri-
bution is known). Al compares that situation to a model
where it is assumed that the X variables act independently
of one another in an effort to measure the importance of
knowing the correlations between the X variables. Clearly,
this goal is similar to the goals of the other information
measures. However, given the fact that Al can be greater
than 7 (X1, X»; Y), as was shown in Example 4, and if we
assume the synergy and redundancy are some portion of
1(X1, X»;Y), Al cannot be the synergy or the redundancy.
Al can provide useful information about a system, but the
distinction between the structure of A/ and the other infor-
mation measures, along with the fact that A/ cannot be
the synergy or redundancy as previously defined, should be
considered when choosing the appropriate information mea-
sure with which to perform an analysis. Unlike several of the
other information measures which showed changes in the
types of interactions present in the developing neural cul-
ture, Al showed a general trend of increasing importance of
correlations in the network throughout development.

The redundancy-synergy index and Varadan’s synergy
are identical to the interaction information when only two
X variables are considered. However, when we examined
three-input Boolean logic gates, we found that Varadan’s
synergy - like the interaction information - was unable to
detect a synergistic interaction among a subset of the X
variables and the Y variable. The redundancy-synergy index
was able to detect this synergy, but it was unable to localize
the subset of X variables involved in the interaction.

The partial information decomposition provided interest-
ing and possibly useful results for several of the example
systems. When applied to the Boolean logic gates, the par-
tial information decomposition was able to identify the X
variables involved in the interactions, unlike all other infor-
mation measures. This is primarily due to the fact that the
partial information decomposition produces several infor-
mation terms to quantify different types of interactions
simultaneously, unlike the other information measures that
produce only one value. Using the AND-gate example, we
saw that the partial information decomposition found that
both synergy and redundancy were present in the system,
unlike the interaction information, which indicated only
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Table 8 Overview of the information measures

Name Formula(s) Variable Partition

Design Goal

Comments

All variables
treated equally

Interaction Eq. (7)~(10)

Information (II)

Measure synergy and
redundancy between S and Y

1I only measures interactions between Y
and all of S. Also, it does not allow for

simultaneous redundancy and synergy.

Measure the total information
passing between all variables
Measure the total information

passing between each variable

and all other variables beyond
the TC

Total Correlation Eq. (13)—-(15) All variables

(TO) treated equally
Dual Total Eq. (16)—(18) All variables
Correlation (DTC) treaded equally

Al Eq. (22) Two distinct groups

Measure the importance of

It is unclear how the results from A/

correlations

of variables

between X variables in

relate to synergy (see Section 5.2)

interactions with the Y variable

Redundancy-Synergy  Eq. (23) Two distinct groups
Index (RSI) of variables
Varadan’s Synergy Eq. (24) Two distinct groups
(VS) of variables

3 Variable Case:
Eq. (31)-(34)

Partial Information Two distinct groups

Decomposition of variables

(PID)

Measure the synergy and
redundancy between S and Y
Measure the synergy and
redundancy between S and Y

Measure the synergy and
redundancy between S and Y

RSI does not allow for simultaneous
redundancy and synergy.

VS only measures interactions between Y
and all of S. Also, VS does not allow for
simultaneous redundancy and synergy.
PID allows for simultaneous synergy and
redundancy, though its definition of
synergy may be subtly different from the
expected definition (see Section 5.3).

synergy was present. Perhaps the most illuminating exam-
ple system for the partial information decomposition was
Example 5. In that case, the partial information decom-
position concluded that each X variable provided entirely
redundant information because each X variable provided
the same amount of information about each state of Y,
even though each X variable provided information about
different states of Y. This point highlights how the partial
information decomposition defines redundancy via Eq. (30).
It calculates the redundant contributions based only on

the amount of information each X variable provides about
each state of Y. In the developing neural culture, the par-
tial information decomposition, similar to the interaction
information, showed a changing balance between synergy
and redundancy through development. However, unlike the
interaction information, the partial information decompo-
sition was able to separate simultaneous synergistic and
redundant interactions.

Based on the results from the various example systems
above and the theoretical structure of each measure, we have

Table 9 Overview of example application of the information measures in typical neuroscience experiments

Example Experiment 1

Example Experiment 2

Example Experiment 3

General Topic
Measurements

Y Variable
X Variables
Experimental
Question
Time Delay
Information
Measures

Encoding

Record a visual stimulus and the

neural activity of an animal

Stimulus variable

Activity of n neural sources
How do the neural sources

encode the stimulus?

X is time lagged from Y
II, A1, RSL VS, or PID

Network Connectivity

Record the spontaneous neural

activity of an acute slice using a

multi-electrode array

Activity of one neuron

Activity of n neurons
How do the n neurons effectively

determine activity of the single neuron?

Y is time lagged from X
II, A1, RSL VS, or PID

Whole Network Behavior

Record the spontaneous neural activity
of an acute slice using a multi-electrode
array

None

Activity of n neurons

How much information do the neurons
share with each other?

None

TC or DTC
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created a table that contains an overview of each measure
(Table 8) and a table that contains information about when
to use the various information measures in three example
neuroscience experiments (Table 9).

7 Conclusion

We applied several multivariate information measures to
simple example systems in an attempt to explore the prop-
erties of the information measures. We found that the
information measures produce similar or identical results
for some systems (e.g. XOR-gate), but that the measures
produce different results for other systems. In examining
these results, we found several subtle differences between
the information measures that impacted the results. Then,
we applied the information measures to spiking data from a
neural culture through its development. Based on this illus-
trative analysis, we saw interesting changes in the amount of
information being transmitted and the interactions present
in the network.

We wish to emphasize that none of these information
measures is the “right” measure. All of them produce results
that can be used to learn something about the system being
studied. We hope that this work will assist other researchers
as they deliberate on the specific questions they wish to
answer about a given system so that they may use the
multivariate information measures that best suit their goals.
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Appendix A: Additional total correlation derivation
Equation (14) can be rewritten as Eq. (15) by adding

and subtracting several joint entropy terms and then using
Eq. (2). For instance, when n = 3, we have:

TC(S)

D HX) | = H(S)

X;eS
H(X1) + H(X2) + H(X3) — H(X1, X2, X3)
H(X1) + H(X2) — H(Xy1, X2) + H(X1, X2)
+ H(X3) — H(X)1, X2, X3)
= I1(X1; X2) + 1 (X1, X2; X3) (33)

A similar substitution can be peformed for n > 3.
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Appendix B: Additional dual total correlation
derivation

Equation (16) can be rewritten as Eq. (18) by substituting
the expression for the total correlation in Eq. (14) and then

applying Eq. (2).

DTC(S)

> H(S/Xn) —(n—1)H(S)

X;eS

X,‘ES

= Do H/X) +H(x,->) —nH(S) —TC(S)

= | D 1es/xi Xi)) —TC(S) (39)

X;eS

Appendix C: Model network

Given values for p,, p1y, p12, and pyy, the relevant condi-
tional probabilities can be calculated in the following way:

px1=1)=p, (40)
px1=0=1—p, (41)
pxa=1lx1 =1) = pr+ pi2—prp12 (42)
pl2=0xi=D)=1=-pr=1x=1) (43)
plx2 = 1ljx;1 =0) = p, (44)
pl2=0lx;=0)=1-p, (45)
p(y=1x1=0,x2=0) = p, (46)
Py =0x1=0x=0=1-p, (47)
p(y =1lx1 =1,x2 =0) = p, + p1y — prp1y (48)

p(y=0lx1=1x0=0=1-pO=1lx1 =1L x2=0) 49
p(y =1lx1 =0,x2=1) = pr + p2y — prp2y (50)

p(y=0lx1=0,2=D=1-p(y=1x1=0,x2=1) 5D

pOy=1lx1=1,x2=1) = pr+p1y + p2y — PrP1y — PrP2y
—PiyP2y+PrPiyp2y (52)

p(y=0lxi=Lx2=D=1-p@ = llxi=L,xx=1) (53)
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Table 10 Joint probabilities for examples 9 to 13

Ex.9 Ex. 10 Ex. 11 Ex. 12 Ex. 13
Diagram 0 O ® ®
©) ‘ () () ©)
& A ® &
Pr 0.02 0.02 0.02 0.02 0.02
P12 0 0.1 0.1 0.1 0.1
Ply 0.1 0.1 0 0.1 0
P2y 0.1 0.1 0.1 0 0
X1 x2 y p(x1,x2,y)
0 0 O 09412 09412 09412 09412 0.9412
1 0 O 0.0173  0.0156  0.0173 0.0156  0.0173
0 1 0 0.0173  0.0173 0.0173  0.0192  0.0192
1 1 0 0.0003  0.0019  0.0021 0.0021 0.0023
0 0 1 0.0192  0.0192 0.0192 0.0192 0.0192
1 0 1 0.0023  0.0021 0.0004  0.0021 0.0004
0 1 1 0.0023  0.0023  0.0023  0.0004  0.0004
1 1 1 0.0001 0.0005  0.0003  0.0003  0.0000

Once these conditional probabilities are defined, the joint
probabilities p(y, x1, x3) can be calculated using the gen-
eral relationship between joint and conditional probabilities:

p(A=a,B=>b)=p(A=a|B=b)p(B=0>) (54)

The joint probabilities for the examples discussed in the
main text of the article are shown in Table 10.
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