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Outline/Goals:

* Tell you a bit about me and what |
do

* Provide a very broad-brush
overview of hydrologic
challenges™

e Starting point for discussion on
interdisciplinary opportunities in
IT and Hydrology

Domailn Science:
Hydrology

* For the record we have solve a lot of problem too... but
I’m mostly going to focus on challenges here.



A bit about me

Water sustainability and watershed dynamics

- Large scale distributed physically based models
that simulate groundwater and surface water
together

Building tools and platforms to make modeling and

data products more accessible

- Lowering barriers to entry for analysis and
expanding the ways we can use these tools

Improving the ways we use and learn from process-

based models

- What information can we learn from these models
that we can’t get from other sources?

Translating science to practice and learning from
water managers and water users
- Finding solutions to problems that matter



What is the job of hydrologists?

To understand and predict the state of water,
and its response to past and future
perturbations and forcings across terrestrial
systems
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Part 1:
example

h

inking conceptually about some
oroblems




What do we mean by prediction?

Model

. @) -



Let’s start with our simplest hydrology example:

Rainfall Runoff

Model
PN
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Let’s start with our simplest hydrology example:

Rainfall Runoff
Model
& @
YY PN
Perfectly Just one
measured watershed

Basically just going from one time series to another... lots of
ways to do this some involving more physics than others



Why is this hard?

Runoff is the result of all of the
watershed processes upstream of it. |
Watersheds change seasonally (e.g. &
plants using more water in the
summer)

Response varies based on the state
of the system (e.g. if its been raining
for a week)

We know there are many
nonstationarities (e.g. land cover
change with warming, human
development)
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What if we want to do this for more than
one watershed ?

Rainfall Runoff
Model

NN

YY IV
Perfectly - Topography Just one
measured ~ Land cover watershed

- Land use

- Water management
- Hydrogeology



In reality we don’t know the rainfall very
well either

Rainfall Runoff

Model
PN
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- Lots of uncertainty in measurements (spatially and temporally)
- In most cases we are actually concerned with rainfall forecasts
- There are feedbacks between the land surface and precipitation




Would we all agree about what the ‘right’
runoff is?

Rainfall Runoff

Model
PN

@& @

- Assuming we have an imperfect model then there are different
preferences about how to be wrong (e.g. preference for high or
low bias, focus on extreme events)




We routinely want to know about the likelihood of
events or conditions that we have never seen before

Runoff

NN
NN

Rainfall

YY




What about some more complicated examples?

- When and where do we expect to see long term shifts in
streamflow regimes with aridification?

- What are the impacts of wetland restoration on quantity and
quality?

- Where are we most at risk for compound hazards (e.g.
wildfires and landslides)?

- How should we conjunctively manage groundwater and
surface water?

- How does groundwater pumping impact drought recovery?



Many of our questions really require a wholistic
view of watershed processes

Streamflow depends
Groundwater recharge groundwater levels which
1] depends on precipitation and control baseflow
. olant water usage

eeeeeeee

Groundwater levels
depend on human
water usage



Part 2: Data and models

“Our models have significant structural errors

and our data are subject to huge uncertainies”
- Someone in this room yesterday
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We have many observations that can tell us part of
the story

Point measurements have Satellite data may have
limited spatial coverage limited resolution
NASA Earth Observing Missions

Groundwater Well Flux Tower

Stream gauges are
spatially aggregated
measurements
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None of them can tell the whole story

| ocal measurements Remote Sensing We |||<e|y haven't
are difficult to scale  can’t see observed many of
everything the events we care

most about

, H’ttb'://flr'iplemlahdfarms.com/

http://nasa.gov



Legend
¢ SNOTEL Sites

® Stream Gauges

Groundwater Wells

0 1000 km

’

~1.2 million
observations
available for
a one-year
simulation

378 SNOTEL Stations
3,050 USGS gages
29,385 USGS Wells
e Varying temporal
resolution



Area of the
Contiguous US

(~8 M km?)

Surface area of the
Ogallala Aquifer
(~450,000 km®)

Total irrigated area

(~200,000 km®)
Size of the

Central Valley
(47,000 km?)

‘ Aerial coverage
‘ Spatial resolution
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Groundwater observation

Modeling approaches
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Models can help bridge gaps

What kind of
model?

(\ Atmospheric
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Approaches to
physically
based modeling
vary greatly
depending on
application

a. Lumped
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c. Quasi3D

e || Ko ] (R ot || hrer e | I =t | =] || o= et

- Saturated Subsurface

I ‘ Unsaturated Subsurface

Boundary Exchanges
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Vertical Simulated Fluxes

<« Horizontal Simulated Fluxes

7]4 3D Simulated Fluxes

Condon et al.,, WRR, 2021



here is also a lot of variability in where we place
the boundaries of our models

Permeability
Contrast

Salinitv Condon et al., WRR, 2020



Machine learning has really taken off in
Hydrology and in many cases outperforms
ohysically based models

Calibration Locations
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Ibrm-cc-lumped -
hymod2-lumped -
grdj-lumped -
hmets-lumped -
blended-lumped -
blended-raven 4
vic-raven -
swat-raven
watflood-raven
mesh-class-raven
mesh-svs-raven
gem-hydro-watroute

Validation Locations

Calibration Period
Jan 2001 - Dec 2010
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Hydrol. Earth Syst. Sci., 26, 3537-3572, 2022 Hyd ro |ogy and
https://doi.org/10.5194/hess-26-3537-2022

© Author(s) 2022. This work is distributed under Earth System
the Creative Commons Attribution 4.0 License. Sciences

Validation Period
Jan 2011 - Dec 2017

The Great Lakes Runoff Intercomparison Project
Phase 4: the Great Lakes (GRIP-GL)

Juliane Mai!, Hongren Shen!, Bryan A. Tolson!, Etienne Gaborit?, Richard Arsenault’, James R. Craig!,

f Vincent Fortin?, Lauren M. Fry*, Martin Gauch’, Daniel Klotz’, Frederik Kratzert>, Nicole O’Brien’,
HUR |MIC| ERI |ONT [ OTT Daniel G. Princz8, Sinan Rasiya Koyag, Tirthankar Royg, Frank Seglenieks7, Narayan K. Shrestha’,
André G. T. Temgoua’, Vincent Vionnet?, and Jonathan W. Waddell'®
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A bit about how | use models



| use integrated
hydrologic
models to
explore
interactions that
are hard to see
and measure

Infiltration
Exfiltration
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flow
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H/No flow
| ' boundary

Saturated
subsurface



CONUS-2.0 Second Generation National ParFlow
Soil Model

g Simulated Water Table Depths

Topography

Depth to
Bedrock




WATER RESOURCES

Contents lists available at ScienceDirect
Advances in Water Resources ‘ \

journal homepage: www.elsevier.com/locate/advwatres

Connections between groundwater
flow and transpiration partitioning

Reed M. Maxwell’* and Laura E. Condon?

Mo A ac_ e A _x_ e\ _ _ & _ _ & _ & _ & _ _ & . ad A A _&E_ i & A& _ i _

Quantitative assessment of groundwater controls across major US river
basins using a multi-model regression algorithm

Laura E. Condon *”%* Amanda S. Hering , Reed M. Maxwell *->4

2 Department of Geology and Geological Engineering, Colorado School of Mines, United States

b Integrated GroundWater Modeling Center, United States

©Department of Applied Mathematics and Statistics, Colorado School of Mines, United States

dClimate Change Water and Society (CCWAS), Integrative Graduate Education and Research Traineeship (IGERT), United States
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ARTICLE

Evapotranspiration depletes groundwater under
warming over the contiguous United States

Laura E. Condon® ™ Adam L. Atchley 2 & Reed M. Maxwell® 3

OPEN ACCESS
10P Publishing Environmental Research Letters

doi:10.1088/1748-9326/9/3/034009

Environ. Res. Lett. 9 (2014) 034009 (9pp)

Groundwater-fed irrigation impacts
spatially distributed temporal scaling
behavior of the natural system: a
spatio-temporal framework for
understanding water management impacts

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

Simulating the sensitivity of evapotranspiration
and streamflow to large-scale groundwater depletion

Laura E. Condon'* and Reed M. Maxwell?

Hydrol. Earth Syst. Sci., 21, 1117-1135, 2017
www.hydrol-earth-syst-sci.net/21/1117/2017/
doi:10.5194/hess-21-1117-2017

© Author(s) 2017. CC Attribution 3.0 License.

Hydrology and
Earth System
Sciences

Systematic shifts in Budyko relationships caused
by groundwater storage changes

Laura E. Condon! and Reed M. Maxwell?




Machine learning Emulators can run 1000

times faster

» Hydrologic Emulator of the
physics-based simulations
(emulators tor the the 3-D
pressure field and the land
surface processes)

» Current conditions
generators use observations
to generate gridded current
conditions

Example of
emulator
performance
comparing
emulated water
table depth to the
physics-based
simulation



HydroGEN

A Machine Learning Platform for
Hydrologic Scenario Generation

PRINCETON

THE UNIVERSITY — BUREAU OF — )
CYVERSE UNIVERSITY

. OF ARIZONA RECLAMATION ~




Part 3: Some concluding thoughts from
yvesterday



Reasons we have trouble fitting our problems
into simple boxes

. Nc?nstationarity is central to many of the most pressing problems we want to
solve

* Almost everything we do is multivariate
* Challenges translating from continuous to discrete variables
e Our causal relationships change in both space and time

* We know there are feedbacks (and they often matter a lot for the extreme
events we worry a lot about)

* We are not able to consistently observe the inputs or the outputs of our
systems. To do our best job we need to combine many pieces of information
from different parts of the system that are often measured in different
locations, and at different spatial and temporal scales

* We are very uncertain about many of the parameters we need to solve our
physical equations



Where do we go from here?

* Progress in mathematical approaches
that allow us to relax some of the
assumptions that don’t fit our systems

* Do a more thoughtful job of figuring
out how to fit into the requirements
of the methods we adopt

e Better understand how the
assumptions we make bias our
solutions




Thank youl!



