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A tale of two experiments:
(1) The Plumber Experiments
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A tale of two experiments:

(2) State-Space Learning
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A tale of two experiments:

(2) State-Space Learning

on Kernel Emulator Final Model

Expectation-Maximization Data Assimilation



A tale of two experiments:

(2) State-Space Learning

HyMod: Calibration, Assimilation, and System Identification

System ID: Convergence of the Mean Estimate Streamflow Prediction Assessment
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Nearing, Grey S., and Hoshin V. Gupta. "The quantity and
quality of information in hydrologic models." Water
Resources Research 51.1 (2015): 524-538.



A tale of two experiments:

(2) State-Space Learning

Rainfall ET

Quick release reservoirs
Runoff Discharge

Slow release reservoir
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A tale of two experiments

(2) State
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Which experiment is more interesting?

(1) ML finds extra information in data

(2) ML finds specific errors in a model



What is a model?
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Gupta, Hoshin V., and Grey S.
Nearing. "Debates—The future of
hydrological sciences: A (common)
path forward? Using models and
data to learn: A systems theoretic
perspective on the future of
hydrological science." (2014).
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Conceptualization &
parameterization
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Fig. 1 Diagram of a simple experiment with a single input and single output. Even in the simplest case, we require at least one process
hypothesis /1 p» and at least two measurement models h ,and /i »- Aleatory uncertainty is defined as the (unknown) distribution 4 (z,|z,),
which would only be knowable if we had access to both a perfect process model and also perfect measurement models. A full model is the

conjunction i = {h ,.h ,.h ,}.




What is hypothesis testing?
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Nearing, Grey S., et al. "Does
information theory provide a new
paradigm for earth science?
Hypothesis testing." Water
Resources Research (2020).



What is hypothesis testing?
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Gong, Wei, et al. "Estimating
epistemic and aleatory uncertainties
during hydrologic modeling: An
information theoretic approach."
1(y; w) oP
Water resources research (2013).
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Finding new information is interesting
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Kratzert, Frederik, et al. "Toward improved
predictions in ungauged basins: Exploiting the
power of machine learning." Water Resources
Research 55.12 (2019).




Data + Domain Science Anecdotes

“Show that precipitation is
useful for predicting floods.”




Data + Domain Science Anecdotes

Despite the impressive performance of ML models [for
streamflow prediction] ... they have not been widely
adopted by government agencies and practitioners ...

While this is due in part to the Al community’s failure to
engage with the hydrologic community, [collaborative
efforts are emerging] leading to the integration of
process knowledge with Al technologies.

— Unnamed Hydrology Research Group



Mass Balance
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Mass Balance

DayMet Precipitation NLDAS Precipitation

Total mass bias:: forcing type: daymet, model: sac Total mass bias:: forcing type: nldas, model: sac




Mass Balance

DayMet Precipitation NLDAS Precipitation

Total mass bias:: forcing type: daymet, model: mc Total mass bias:: forcing type: nldas, model: mc




Adding physics into ML streamflow
models ... does not help (so far)

® Use physical models as

inputs to ML models b — O Wt
e Add physical symmetries to
ML model structures &9 9
9.
e Regularize loss function @ G Py

e Augmented / synthetic
targets



“Isomorphisms” between physics and ML

“Building Blocks’ of Physical Intuition: Types of Inductive Bias

e Causalty — S ————e Networks
e Generalizability — N\~ ———— e Transfer Learning, Few Shot

Learning, etc.



What are the core challenges?



What are the core challenges?

(1) Can physics constrain imperfect
optimization?

(2) Can physics regularize outside of
the training envelope?



Where is data-based Geoscience
modeling headed?

Concept Models ML-Based Parameterizations Geo-Foundation Models
° ) o
_ Al + Physics Al on Concepts A
6 o
ML-Based Parameters & Conceptual Graph Models



What is a model?

Measurement
Model

Measurement
Model

Parameters

Boundary
Conditions
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Conceptualization
& Parameterization

States/Fluxes

Nearing, Grey S., and Hoshin V. Gupta. "Ensembles vs.
information theory: supporting science under uncertainty."
Frontiers of Earth Science (2018).

Prediction of
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