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Uniform Tests of 

Randomness (1976)
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…essential to do testing and confidence intervals in
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Anytime-Valid
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2023: 100s of papers...eg in Annals, JRRS, Biometrika, 

Neurips, JASA, Statistical Science  

Ramdas’ group at CMU and my group at CWI the most 

active…

G. The E-Posterior Proc. Royal Soc. London Series A, 

2023

G. Beyond Neyman-Pearson. Proc. Nat. Academy of 

Sciences USA, pending minor revision

NEWSFLASH: 

Aaditya Ramdas just received the 2023 Institute of Mathematical 

Statistics Early Career Prize "for significant contributions in […] 

reproducibility in science […] active, sequential decision-making and

assumption-light uncertainty quantification. ….. the prize 

recognizes  Dr. Ramdas' outstanding potential to shape the future of 

statistics.”



Brittleness of Classical, 

“Frequentist” Testing and 

Confidence Intervals



Null Hypothesis Testing

• Null Hypothesis: status quo

• “Coin is Fair” 

• No Difference between Treatment and Control



Null Hypothesis Testing

Prototypical case: z-test: 

𝑋1, 𝑋2, … independently identically distributed (i.i.d.), 

Gaussian, variance 1 

𝐻0: mean is some 𝜇0 (usually 0)

𝐻1: mean ≠ 𝜇0



Classical, p-value based testing

• I test new medication on 𝑛 patients at level 𝛼

n decided upon in advance

• 𝑝𝑛 : p-value for null hypothesis 𝐻0 at 𝑛,

i.e. data 𝑋𝑛 = 𝑋1, … , 𝑋𝑛
• If 𝑝𝑛 ≤ 𝛼 I “reject” the null, otherwise I “accept” it 

• z-test,standard 𝛼 = 0.05 ⇔ “reject iff | ത𝑋 − 𝜇0| ≥
1.96

𝑛
“



Issues with classical tests and CIs

• 𝑝𝑛 : p-value for null hypothesis 𝐻0,  𝑛 data points

• I test new medication on 𝑛 = 100 patients at level 𝛼

• At 𝑛 = 50 boss says: let’s peek at data.    

Perhaps we can reject null already! 
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Issues with classical tests and CIs

• I test new medication on 𝑛 = 100 patients

• At 𝑛 = 50 boss says: let’s peek at data.    

• …I find that 𝑝50 ≤ 𝛼 so I already reject the null

• Is this OK?

NO!…because then you violate Type-I error 

guarantee, the method’s cornerstone

You will conclude “there is an effect” (far) too often!

Type- I Error Guarantee: if the null is true then the 

probability I reject it (claim a nonexisting effect) is ≤ 𝛼
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Issue runs deeper 

• 𝑝𝑛 : p-value for null hypothesis 𝐻0,  𝑛 data points

• Test new medication on 𝑛 = 100 patients at level 𝛼

• At 𝑛 = 50 boss says: let’s peek at data.    

Perhaps we can reject null already! 

• ..we find that 𝑝50 > 𝛼 so we simply wait until 𝑛 =
100 to make a decision 

• Is this OK? 



classical stats: almost as spooky 

as quantum mechanics…

• By merely peeking at the data we destroy validity of 

accept/reject conclusion, even if we don’t act upon 

the data we actually saw 

• …only if we can guarantee that no matter what data 

we will see upon early peeking, we will never act 

upon it can we guarantee validity of our conclusion 

• …but then we are indistinguishable from an agent 

who does not peek at the data…



Replication Crisis in 

Science 
“at least 50% of highly cited results 
in medicine is irreproducible”

J. Ioannidis, PLoS Medicine 2005 
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Replication Crisis in 

Science 
somehow related to use of p-values and 

significance testing… 



standard 95% CI: ത𝑋 ± 1.96/ 𝑛

Z-test ⇒ Z-Confidence Interval



Suppose 𝐻0: 𝜇 = 7 is true yet you keep sampling until 𝐻0 can 

be rejected (falls outside of the CI) or some 𝑛max has been 

achieved. We plot the probability that 𝜃 is contained in your 

CI at time 𝑛max as function of 𝑛max



anytime-valid CI based on “non-informative” prior distribution

standard CI: ത𝑋 ± 1.96/ 𝑛

Anytime-Valid Confidence Interval

(“Confidence Sequence”)



Suppose 𝐻0: 𝜇 = 7 is true yet you keep sampling until 𝐻0 can 

be rejected (falls outside of the CI) or some 𝑛max has been 

achieved. We plot the probability that 𝜃 is contained in your 

CI at time 𝑛max as function of 𝑛max



AV CI, “non-informative” prior: ത𝑋 ±
6+log 𝑛

𝑛

standard CI: ത𝑋 ± 1.96/ 𝑛



When repeated experiments are 

not possible…
• Outside of medical and psychological sciences, the 

very concept of error guarantees may not make sense

• …data may exhibit patterns, that may even have 

predictive value, but data cannot seriously be thought 

of as repeated realizations of a random process  

• …then classical tests/CIs just make no sense at all. AV 

methods may make some sense…at least they can 

handle the fact that we might be just given some 

data…without precise knowledge of the underlying 

sampling plan 



Part 2: 

Minimum Description 

Length Principle 

Any regularity in a sequence of data can be used to 

compress this data, i.e. describe it using less bits than 

would be used to describe the data literally…

0001000100010001….00010001

• Pick the model that allows for the most (lossless) 

compression of the data

(e.g. Alex’ setting when we are NOT yet in the 

asymptotic regime! – that’s also when you want to 

have uncertainty estimates)



Part 2: 

Minimum Description 

Length Principle 

• Pick the model that allows for the most (lossless) 

compression of the data

• Also originally (Rissanen 1978) intended as an 

approach towards statistics that remains meaningful 

even if “true distributions” don’t really exist 

We never want to make the false assumption that the 

observed data were actually generated by a distribution 

of some kind, say Gaussian, and then analyze the 

consequences. Our deductions may be entertaining, but 

quite irrelevant from the task at hand, which is to learn 

useful properties of the data (Rissanen 1990)



Part 2: 

Minimum Description 

Length Principle 

• Pick the model that allows for the most (lossless) 

compression of the data

• To make the informal idea well-defined, we must  

associate each model under consideration with a 

lossless, “universal” code

• Now probabilities inevitably come in after all



MDL Principle 

• Associate each model under consideration with a 

lossless, “universal” code

• If a ‘model’ 𝐻0 = 𝑃0 really stands for just 1 

distribution, this is the idealized Shannon-Fano code 

with lengths 𝐿𝐻0 𝑋1, … , 𝑋𝑛 = − log 𝑝0(𝑋1, … , 𝑋𝑛)

• The Shannon-Fano code minimizes expected 

codelength under 𝑃0 among all lossless codes: 

min
𝐿

𝐸𝑃0 𝐿 𝑋𝑛 = 𝐸𝑃0 − log 𝑝0 𝑋𝑛

…minimum runs* over all uniquely decodable codes



ASIDE: 

Interpretation of Shannon Entropy

• The Shannon-Fano code minimizes expected 

codelength under 𝑃0 among all lossless codes: 

min
𝐿

𝐸𝑃0 𝐿 𝑋𝑛 = 𝐸𝑃0 − log 𝑝0 𝑋𝑛 = 𝑯(𝑷𝟎)

…minimum runs* over all uniquely decodable codes

• Shannon Entropy: expected amount of bits needed 

to code your data if you use the best code i.e. the 

one minimizing this expected codelength

• There are many other entropies corresponding to 

different types of “prediction”

• Grünwald/Dawid Game Theory,  Maximum 

Entropy,… Annals of Statistics 2004



MDL Principle 

• If model 𝐻0 = 𝑃0 is simple, take Shannon-Fano

code with lengths 𝐿𝐻0 𝑋1, … , 𝑋𝑛 = − log 𝑝0(𝑋1, … , 𝑋𝑛)

• If model 𝐻 = 𝑃𝜃: 𝜃 ∈ Θ is larger (even 

nonparametric), we take code such that 

E𝑃𝜃[𝐿𝐻 𝑋𝑛 − [− log 𝑝𝜃(𝑋
𝑛)]] is small for all 𝜃 ∈ Θ

no matter what 𝑃𝜃 actually obtains, we will not need 

many more bits to encode our data than we would need 

if we would actually know 𝑃𝜃 (=universality)



Minimum Description 

Length Principle 
• If model 𝐻 = 𝑃𝜃: 𝜃 ∈ Θ is large,take code s.t.

E𝑃𝜃[𝐿𝐻 𝑋𝑛 − [− log 𝑝𝜃(𝑋
𝑛)]] is small for all 𝜃 ∈ Θ

For parametric models, universal codes can be 

designed based on two-part techniques…  

𝐿𝐻 𝑋𝑛 = min
𝜃∈ ሷΘ

𝐿 𝜃 − log 𝑝𝜃(𝑋
𝑛)

“explicit regularization”

Misspecification: use 𝛽(− log𝑤(𝜃)) , correction factor 𝛽

Optimal prior: Jeffreys’  based on Fisher information 

= − log𝑤(𝜃)



Minimum Description 

Length Principle 
• If model 𝐻 = 𝑃𝜃: 𝜃 ∈ Θ is large,take code s.t.

E𝑃𝜃[𝐿𝐻 𝑋𝑛 − [− log 𝑝𝜃(𝑋
𝑛)]] is small for all 𝜃 ∈ Θ

For parametric models, universal codes can be 

designed based on two-part techniques…  

𝐿𝐻 𝑋𝑛 = min
𝜃∈ ሷΘ

𝐿 𝜃 − log 𝑝𝜃(𝑋
𝑛)

or as pseudo-Bayesian marginal likelihoods

𝐿𝐻 𝑋𝑛 = − log ∫ 𝑝𝜃 𝑋𝑛 𝑤 𝜃 𝑑𝜃

or in terms of  sequential prediction errors

𝐿𝐻 𝑋𝑛 = 

𝑖=1..𝑛

− log 𝑝𝜃 𝑋𝑖−1 (𝑋𝑖)



Minimum Description 

Length Principle 
• If model 𝐻 = 𝑃𝜃: 𝜃 ∈ Θ is large,take code s.t.

E𝑃𝜃[𝐿𝐻 𝑋𝑛 − [− log 𝑝𝜃(𝑋
𝑛)]] is small for all 𝜃 ∈ Θ

For parametric models with 𝑘 parameters, all universal 

codes asymptotically achieve 

𝐿𝐻 𝑋𝑛 =
𝑘

2
log 𝑛 − log 𝑝𝜃 𝑋𝑛 + const.



MDL and BIC

• Suppose we compare two models 𝐻0 and 𝐻1

• We pick 𝐻𝑗 for which 𝐿𝐻𝑗
𝑋𝑛 is the smallest

• If we keep dimensionality 𝑘𝑗 of each model fixed, and 

model is sufficiently regular, then for sufficiently large 

𝑛 we pick 𝐻𝑗 with minimal − log 𝑝𝜃𝑗 𝑋
𝑛 +

𝑘𝑗

2
log 𝑛



MDL and BIC

• Suppose we compare two models 𝐻0 and 𝐻1

• We pick 𝐻𝑗 for which 𝐿𝐻𝑗
𝑋𝑛 is the smallest

• If we keep dimensionality 𝑘𝑗 of each model fixed, and 

model is sufficiently regular, then for sufficiently large 

𝑛 we pick 𝐻𝑗 with minimal − log 𝑝𝜃𝑗 𝑋
𝑛 +

𝑘𝑗

2
log 𝑛

• …which is also the model selected by BIC

• This led some to believe that MDL=BIC, but that is 

an incredibly misleading statement

• …for small 𝒏, model “complexity” depends on so 

much more than the number of parameters… 



MDL and Bayes

• Similar remarks apply to MDL and Bayes factor 

approaches…

• …they are similar in low-dimensional cases, but 

(completely) diverge in some other cases

G. The E-Posterior. Phil. Trans. Roy. Society of 

London, 2023



MDL and Cross/Forward Validation

• It is often thought that such an information-theoretic 

approach is at odds with cross-validation…

• …but it is not: it can be re-interpreted in terms of 

forward (or “prequential”) validation, a variation 

of cross-validation

(Rissanen ‘84, Dawid ‘84)



MDL and anytime-valid methods

• If null is simple, then 𝑆 𝑋1 , 𝑆 𝑋2 , … with  

𝑆 𝑋𝑛 ≔ exp 𝐿𝐻0 𝑋𝑛 − 𝐿𝐻1 𝑋𝑛

.   is an instance of what is called an “e-process” 

• E-processes are the basis of anytime-valid tests, 

since…



E-Processes and 

Anytime-Valid Testing 

so the procedure that rejects the null iff e-value 𝑆 ≥ 1/𝛼, 

has Type-I error guarantee 𝛼 no matter when one 

stops sampling

- One can always stop for any reason, and always 

continue for any reason



MDL and anytime-valid methods

• If null is simple, then 𝑆 𝑋1 , 𝑆 𝑋2 , … with  

𝑆 𝑥𝑛 ≔ exp 𝐿𝐻0 𝑋𝑛 − 𝐿𝐻1 𝑋𝑛

.   is an instance of what is called an “e-process” 

• If one rejects the null if 𝑆 𝑋𝑛 ≥ 1/𝛼 , one obtains a 

procedure with Type-I error 𝛼 , no matter how the 

sample size 𝑛 was arrived at

• …one gets Type-I error bounds under optional 

stopping and continuation – anytime validity!

• …and based on these one can make anytime-valid 

confidence intervals



MDL and AV

• Any e-process can be reinterpreted in terms of a 

codelength difference and thus e-value based testing 

and CIs are really* also MDL methods

• The probability, if the null hypothesis is true, that with 

any fixed code you will ever compress the data more 

than log2 20 = 4.3 bits extra compared to how much 

you compress with 𝐿𝐻0 is at most 
1

20
= 0.05. 



MDL and AV

• Any e-process can be reinterpreted in terms of a 

codelength difference and thus e-process based 

testing and CIs are really* also MDL methods

• The converse is not true – if 𝐻0 is composite (large), 

we need an extra (but very natural!) condition on the 

code associated with 𝐻0, with lengths 𝐿𝐻0 , to make 

exponentiated codelength difference an e-process

• …otherwise we can get, as also happens with 

Bayesian approaches to high-dimensional learning, 

“overconfidence”



MDL and AV

• Any e-process can be reinterpreted in terms of a 

codelength difference and thus e-process based 

testing and CIs are really* also MDL methods

• The converse is not true – if 𝐻0 is composite (large), 

we need an extra (but very natural!) condition on the 

code associated with 𝐻0, with lengths 𝐿𝐻0 , to make 

exponentiated codelength difference an e-process

• …basically condition ensures that we do not just 

have a valid codelength interpretation but also a 

betting interpretation



An Unusual Example with 

simple null 

1. Ryabko & Monarev’s (2005) 

Compression-based randomness test

• R&M checked whether sequences generated by famous 

random number generators can be compressed by 

standard data compressors such as gzip and rar

• Answer: yes! 200 bits compression for file of 10 megabytes

• The probability that this would ever, no matter at what 

length one cuts off the file, happen, is thus bounded by 

2−200 . Really a strong refutation of the randomness 

hypothesis. (note that the 10 megabytes total length play 

no role in this computation)



Take Home

• Anytime-Valid Tests and Confidence Intervals

• a bit less power/wider than standard CIs

• …but much more robust: Type-I validity preserved 

under any-time evaluation 

• in practice always built on “e-values”

• MDL methods:

• want to use in realms where traditional statistical 

assumptions do not necessarily apply

• …but as a sanity check, if these assumptions do 

apply, they should give valid results! This requires 

special conditions and then MDL approaches 

become equivalent to anytime-valid approaches 



(Additional Slides in Case of 

Questions)



E-Variables: 

Building Blocks of AV tests

An e-variable for data 𝑋1, 𝑋2, … , 𝑋𝑛 is any nonnegative

statistic 𝑆 = 𝑆 𝑋1, … , 𝑋𝑛 such that if the null hypothesis 

holds, we have: 



if null is simple,  

Bayes factors are e-values

• Suppose 𝐻0 = {𝑝𝜃0 } is just a single distribution

• …as in our running example 

• Then for any set of distributions 𝐻1 = {𝑝𝜃: 𝜃 ∈ Θ1}, and 

any “prior” distribution 𝑤(𝜃) , 

𝑆[𝜃0] ≔
∫ 𝑝𝜃 𝑋1,…,𝑋𝑛 𝑤 𝜃 𝑑𝜃

𝑝𝜃0(𝑋1,…,𝑋𝑛)
is an e-variable,

…since 𝐄 𝑆[𝜃0] =

∫ 𝑝𝜃0 𝑥1, … , 𝑥𝑛 ⋅
∫ 𝑝𝜃 𝑥1 , … , 𝑥𝑛 𝑤 𝜃 𝑑𝜃

𝑝𝜃0 𝑥1, … , 𝑥𝑛
d𝑥1. . d𝑥𝑛 = 1



• E-values are nonnegative. If the null is true we expect 

them to be small, so:

• …if they turn out large this provides evidence 

against the null 

• In fact, if the null is true, then for any 0 < 𝛼 ≤ 1 ∶



E-Values and Classical Testing 

so the procedure that rejects the null iff e-value 𝑆 ≥ 1/𝛼, 

has Type-I error guarantee 𝛼

E-values can be used for classical testing! 



Optional Continuation

• …but now suppose  we decide to do a second test, 

because the results look promising… 

• based on additional data 𝑋𝑛+1, …𝑋𝑛2 we calculate a 

new e-value 𝑆′(𝑋𝑛+1,… ,𝑋𝑛2)

Fundamental Insight:

if we multiply both e-values, we get a new e-value,  

which can still be used for testing 

…and we can multiply in a third, and a fourth…



Optional Continuation Theorem

Let 𝑆1, 𝑆2, … be a sequence of e-variables:

𝑆1 = 𝑠1 𝑋(1) , 𝑆2 = 𝑠2 𝑋 2 , …

with 𝑋 1 , 𝑋(2), … independent samples, yet definition 𝑠𝑗
of 𝑆𝑗 allowed to depend on all past data 𝑋(1), …𝑋(𝑗−1)

Then for any random stopping time 𝜏 , 𝑆(𝜏) = ς𝑗=1..𝜏 𝑆𝑗
is an e-variable. As a consequence, if the null is true: 



Optional Continuation Theorem

“Theorem”. Let 𝑆1, 𝑆2, … be a sequence of e-variables 

𝑆1 = 𝑠1 𝑋(1) , 𝑆2 = 𝑠2 𝑋(2) , …

with 𝑋(1), 𝑋(2) independent samples, but definition 𝑠𝑗 of 

𝑆𝑗 allowed to depend on all past data 𝑋(1) , …𝑋(𝑗−1)

Then for any stopping time 𝜏 , 𝑆(𝜏) = ς𝑗=1..𝜏 𝑆𝑗 is an e-

variable. As a consequence, if the null is true, even:

The probability that 𝑆(𝑛) will ever grow larger than 1/𝛼, 

is bounded by 𝛼 : we have our Type-I error guarantee



Optional Stopping

Suppose the null is true.

The probability that 𝑆(𝑛) will ever grow larger than 1/𝛼, 

is then bounded by 𝛼

Similarly, under some further conditions it holds that the 

probability that there will ever be an 𝑛 for which 

𝑆 𝑋1, … , 𝑋𝑛 is larger than 1/𝛼 , is bounded by 𝛼



From tests to AV CIs

For every value 𝜃 of parameter of interest, let 𝑆[𝜃] be an 

e-variable relative to 𝐻0: 𝜃 represents ground truth

Our 95% AV CI at sample size 𝑛 is now simply defined 

to be the set of 𝜃 such that 𝑆 𝜃 𝑋1, … , 𝑋𝑛 < 20

“The 𝜽 we cannot reject at 𝒏” 



1. Brittleness of Classical Testing and 

Confidence Intervals

2. Brittleness of Bayesian Testing and Credible 

Intervals



Yellow: Bayes 95% credible interval based on 

noninformative prior ≈ ത𝑋 ± 1.96/ 𝑛

Blue: 95% AV interval based on same prior:



Subjective and Objective, 

at the same time

• E-Posteriors and the AV CIs they induce rely on a 

prior, just like Bayesian posteriors…

• …but they remain valid irrespective of prior you use

…suppose for example you have a pretty mistaken 

prior belief that 𝜃 = 0, with variance 0.5 …





Subjective and Objective, 

at the same time

• E-Posteriors and the AV CIs they induce rely on a 

prior, just like Bayesian posteriors…

…but they remain valid irrespective of prior you use

with a bad prior, the e-posterior 

gets wide rather than wrong 



Main Interpretation: 

Betting



• 1-to-1 correspondence between testing with e-

values and betting in a casino

• product of e-values can be interpreted as amount of 

money you made so far in a game in which, at each 

time 𝑛,  you don’t expect to gain any money if 𝐻0 is 

true, and you re-invest all your earnings so far

Evidence against null ⇔ getting rich

• Different betting strategies ⇔ different e-variables 

• Multiply e-values ⇔ reinvest all your money

• Anytime validity ⇔in real casino, you don’t expect 

to get rich - no matter what is your rule for 

stopping and going home



Optimal E-Values

• Optimal  e-values are those that make you rich as fast 

as possible if the null hypothesis is wrong

• This has been called growth rate optimality:       

use e-values such that 𝐄[log 𝑆(𝑋1, … , 𝑋𝑛)] is large under 

alternative

• good reasons for taking logarithm…

• (log) growth rate replaces power

• related to minimum cross-entropy, data compression



Better 

use e -values!

Vested 

p-interests


