Finite and Infinite Models: Optimal Prediction of Hidden Markov Proceses

Alexandra M. Jurgens

INRIA Sud Ouest - Bordeaux

Information Theory as a Bridge Across the Geosciences and Modeling Sciences

11/09/2023

review article

Simple mathematical models with very complicated dynamics

Robert M. May*

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

review article

Simple mathematical models with very complicated dynamics
Robert M. May*
First-order difference equations arise in many contexts in the biological, economic and social sciences.
Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical Such equations, even though simple and deterministic, can exhitit a surprising array of dynamical
behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

Object of Study: Processes

The random variables X_{i} may take on values in alphabet A :

$$
\overleftrightarrow{X}=\ldots X_{-1} X_{0} X_{1} \ldots
$$

Object of Study: Processes

Let $A=\{0,1\}$. Then a realization of the process is written

$$
\begin{aligned}
\overleftrightarrow{x} & =\ldots x_{-1} x_{0} x_{1} \ldots \\
& =\ldots 011 \ldots
\end{aligned}
$$

System Instrument Process
A process P is defined as the probability distribution over bi-infinite strings.

Information Theory

The Shannon entropy over a random variable is defined:

$$
H[X]=-\sum_{x \in A} \operatorname{Pr}(X=x) \log _{2} \operatorname{Pr}(X=x)
$$

Information Theory

Information Theory

$$
\overleftrightarrow{X}=\ldots X_{-3} X_{-2} X_{-1} X_{0} X_{1} X_{2} X_{3} \ldots
$$

$H\left[X_{0}\right]$

Entropy Rate

$$
\begin{aligned}
h_{\mu} & =\lim _{L \rightarrow \infty} H\left[X_{0} \mid \text { Past }\right] \\
& =\lim _{L \rightarrow \infty}\left(H\left[X_{0}, \text { Past }\right]-H[\text { Past }]\right)
\end{aligned}
$$

h_{μ} is the irreducible randomness of a process.

This is the limit of our predictive abilities.

Excess Entropy

Elusive Information

Models of Time Series

Hidden Markov Models

The Utility of (Good) Models

$$
h_{\mu}=\sum_{\sigma \in S} \operatorname{Pr}(\sigma) H[X \mid \sigma]
$$

The Utility of (Good) Models

What's "Good"?

ϵ-Machines are "Good"

- States are a function of the past
- Optimal predictor
- Minimal in size
- Unique
\Rightarrow The ϵ machine

ϵ-Machines are "Good"

- States are a function of the past
- Optimal predictor
- Minimal in size
- Unique
\Rightarrow The ϵ machine
Mechanism?

ϵ-Machines are "Good"

The number of bits required to store the ϵ -machine is called the statistical complexity:

$$
C_{\mu}=H[\mathrm{~S}]
$$

Most HMMs are Not Optimal Predictors!

$$
h_{\mu} \neq \sum_{\sigma \in \mathrm{S}} \operatorname{Pr}(\sigma) H[X \mid \sigma]
$$

Problem Statement

Given an arbitrary finite-state hidden Markov model,
how to get ϵ-machine?

Observe and Update Game

Observed sequence: λ

Observe and Update Game

Observed sequence: $\lambda 1$

Observe and Update Game

Observed sequence: $\lambda 10$

Observe and Update Game

Observed sequence: $\lambda 101$

Observe and Update Game

Observed sequence: $\lambda 1011$

Observe and Update Game

The Infinite State ϵ-Machine

The set of belief states R is the attractor of the
"observe and update" stochastic dynamical
system (known as an iterated function system).

The Infinite State ϵ-Machine

$\operatorname{Pr}(0,0,1)$

The set of belief states R is the attractor of the
"observe and update" stochastic dynamical
system (known as an iterated function system).
This attractor exists and is unique due to contractivity, but is generically fractal-like.

The Infinite State ϵ-Machine

For most finitely generated hidden Markov
processes, the ϵ machine is an uncountably
infinite state set + transitions between these
states.

Calculating Shannon Entropy Rate

Calculating Shannon Entropy Rate

$$
h_{\mu}^{B}=\int_{R} \mathrm{~d} \mu(\eta) H[X \mid \eta]
$$

Calculating Shannon Entropy Rate

$\mu(R)$ is called the Blackwell measure.
It can be used to calculate the entropy rate:

$$
\begin{aligned}
& h_{\mu}^{B}=\int_{R} \mathrm{~d} \mu(\eta) H[X \mid \eta] \\
& \widehat{h_{\mu}^{B}}=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{t=0}^{L} H\left[X_{t} \mid \eta_{t}\right]
\end{aligned}
$$

Structure: Statistical Complexity?

$$
C_{\mu} \rightarrow \infty
$$

Structure: Information Dimension

Statistical Complexity Dimension?

$$
\begin{gathered}
C_{\mu} \rightarrow \infty \\
\operatorname{dim}_{\mu}(R) \sim \frac{\Delta H\left[R_{\epsilon}\right]}{\Delta \ln \epsilon}=\frac{\Delta C_{\mu, \epsilon}}{\Delta \ln \epsilon}
\end{gathered}
$$

Calculating Information Dimension

Calculate the Lyapunov spectrum:

$$
\begin{aligned}
& \Gamma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\} \\
& \quad \text { s.t. } \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}
\end{aligned}
$$

Kaplan-Yorke conjecture:

$$
\operatorname{dim}_{I}=k+\frac{\sum_{i}^{k} \lambda_{i}}{\left|\lambda_{k+1}\right|}
$$

Where k is the largest index for which the sum

$$
\sum_{i}^{k} \lambda_{i} \text { is positive. }
$$

Calculating Information Dimension

For the Lorenz attractor with $\sigma=10, r=28$,
$b=8 / 3$:

$$
\Gamma=\{0.90563,0,-14.57219\}
$$

So the Lyapunov dimension is:

$$
\operatorname{dim}_{I}=2.06215
$$

New Quantity: The Ambiguity Rate

Entropy rate measures uncertainty in the next symbol given the present.

$$
h_{\mu}=H\left[X_{0}, S_{1} \mid S_{0}\right]
$$

New Quantity: The Ambiguity Rate

Entropy rate measures uncertainty in the next symbol given the present.

$$
h_{\mu}=H\left[X_{0}, S_{1} \mid S_{0}\right]
$$

Ambiguity rate measures uncertainty in prior symbol given the present.

$$
h_{a}=H\left[X_{-1}, \mathrm{~S}_{-1} \mid \mathrm{S}_{0}\right]
$$

Statistical Complexity Dimension

$$
\operatorname{dim}_{\mu}(R)=k+\frac{h_{\mu}-h_{a}+\sum_{i}^{k} \lambda_{i}}{\left|\lambda_{k+1}\right|}
$$

Statistical Complexity Dimension

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)

Statistical Complexity Dimension

$$
\begin{gathered}
C_{\mu} \rightarrow \infty \\
\operatorname{dim}_{\mu}(R)=\frac{\Delta C_{\mu, \epsilon}}{\Delta \ln \epsilon}=k+\frac{h_{\mu}-h_{a}+\sum_{i}^{k} \lambda_{i}}{\left|\lambda_{k+1}\right|}
\end{gathered}
$$

\rightarrow Can calculate randomness and structure, now for infinite states!

Growth Rate of Predictive Models

$\Delta H[$ Predictive states $]=h_{\mu}-h_{a}$

Entropy rate

Ambiguity rate

Growth Rate of Predictive Models

For a finite state model:

$$
h_{\mu}-h_{a}=0
$$

Growth Rate of Predictive Models

$$
\Delta H[\text { Predictive states }]=h_{\mu}-h_{a}
$$

"Every history counts"

$$
h_{\mu}-h_{a}=h_{\mu}
$$

Growth Rate of Predictive Models

$$
\Delta H[\text { Predictive states }]=h_{\mu}-h_{a}
$$

Finite states

$$
h_{\mu}-h_{a}=0
$$

In general:

$$
h_{\mu}>h_{\mu}-h_{a}>0
$$

"Every history counts"

$$
h_{\mu}-h_{a}=h_{\mu}
$$

Acknowledgements + Questions

Thank you to my PhD advisor, Jim Crutchfield, and all those at the Complexity Sciences Center, especially Alec Boyd, Adam Rupe, Sam Loomis and for helpful discussions.

Thank you as well to my curent group leader at INRIA Bordeaux, Nicolas Brodu.

Contact:

Website: https://csc.ucdavis.edu/~ajurgens/ Email: alexandra.jurgens@inria.fr
Twitter: @amjurgens

Inría

Acknowledgements + Questions

Create tikz code depicting an iceberg, but overlay a finite state machine on the above water portion and a black rectangle on the underwater portion. Include code to replace the rectangle by an inserted image.

Certainly! Below is the TikZ code to depict an iceberg with a finite state machine (FSM) overlay on the above water portion and a black rectangle on the underwater portion. Additionally, it includes the code to replace the black rectangle with an inserted image.

Thank you to my PhD advisor, Jim Crutchfield, and all those at the Complexity Sciences Center, especially Alec Boyd, Adam Rupe, Sam Loomis and for helpful discussions.

Thank you as well to my curent group leader at INRIA Bordeaux, Nicolas Brodu.

Contact:

Website: https://csc.ucdavis.edu/~ajurgens/ Email: alexandra.jurgens@inria.fr
Twitter: @amjurgens

corzía

The Utility of (Good) Models

$$
\begin{gathered}
h_{\mu}=\sum_{\sigma \in \mathrm{S}} \operatorname{Pr}(\sigma) H[X \mid \sigma] \\
E=I[\overrightarrow{\mathrm{~s}} ; \overleftarrow{\mathrm{s}}] \\
\sigma_{\mu}=I\left[\overrightarrow{\mathrm{~S}} ; \overleftarrow{\mathrm{S}} \mid X_{0}\right]
\end{gathered}
$$

The Utility of (Good) Models

Ryan G. James, Christopher J. Ellison, James P. Crutchfield. Anatomy of a bit: Information in a time series observation. Chaos 21, 037109 (2011)

