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Simple mathematical models with very

complicated dynamics
Robert M. May*

First-order difference equations arise in many contexts in the biological, economic and social sciences.
Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical
behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random
fluctuations. There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of the fine structure of the trajectories, and some concerned with the practical
implications and applications. This is an interpretive review of them.
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Object of Study: Processes

The random variables X may take on values in
alphabet A:

...001011101000...

<>

System  Instrument Process



Object of Study: Processes

letA = {0,1}.Then a realization of the process is
written

...001011101000... PN

X = ...x_lexl...
= ...011...

System  Instrument  Process Aprocess P isdefined as the probability distribution
over bi-infinite strings.
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Information Theory

Shannon Entropy

The Shannon entropy over a random variable is
defined:

H[X] = — ZPr(X=x) log, Pr (X = x)

xXEA
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Claude E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal. 27 (3): 379-423.(1948)



Information Theory

H |X,|

H[X]=— ) Pr(X=x) log,Pr(X =x)

xX€EA

Claude E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal. 27 (3): 379-423.(1948)



Information Theory

_ H |Past| ‘ H |Future|




Entropy Rate

H |X,]

H [Future]

h, = lim H X, | Past]|

= lim (H X, Past| — H [Past])

L— o0

h,, is the irreducible randomness of a process.

This is the limit of our predictive abilities.

James P. Crutchfield, David P. Feldman. Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 1 March 2003; 13 (1): 25-54.



Excess Entropy

H |X,] A
H [Future]
bits o AH(L)
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Excess entropy: information shared between the past and
the present + future.

James P. Crutchfield, David P. Feldman. Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 1 March 2003; 13 (1): 25-54.



Elusive Information

H |X,]

H [Future]

Ryan G. James, Christopher J. Ellison, James P. Crutchfield. Anatomy of a bit: Information in a time series observation. Chaos 21, 037109 (2011)

James P. Crutchfield, David P. Feldman. Regularities unseen, randomness observed.: Levels of entropy convergence. Chaos 1 March 2003; 13 (1): 25-54.
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Models of Time Series

Hidden state
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Transitions
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Models of Time Series

Probability of
transition

Pr (q,x | 6]-)

Hidden state

Transitions

O; = Oy

Observed

symbols
xXeEA



Hidden Markov Models
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The Utility of (Good) Models

0: pC@ . h, = ZPr(a) H [X\ 0]
0ES



The Utility of (Good) Models

H |X,]

® States are a function of the past
H[Future]
® Optimal predictor
® Minimal in size

® Unique

Ryan G. James, Christopher J. Ellison, James P. Crutchfield. Anatomy of a bit: Information in a time series observation. Chaos 21, 037109 (2011)
C.R.Shalizi and J. P. Crutchfield. “Computational Mechanics: Pattern and Prediction, Structure and Simplicity”. In: J. Stat. Phys. 104 (2001), pp. 817-879.



What's “"Good"”?

Past, ~ Past, <= Pr[Future | Past,] = Pr[Future | Past, ]

Equivalence class partitions pasts into the causal states
S=H/~"

Space of all
Pasts H

James P. Crutchfield, K. Young. Inferring statistical complexity. Phys. Rev. Lett., 63 (2) (1989), pp. 105-108



c-Machines are "Good"”

H |X,]

® States are a function of the past
i ® Optimal predictor
® Minimal in size
® Unique

= [he € machine

C.R.Shalizi and J. P. Crutchfield. “Computational Mechanics: Pattern and Prediction, Structure and Simplicity”. In: J. Stat. Phys. 104 (2001), pp. 817-879.



c-Machines are "Good"”

H |X,]

® States are a function of the past
i ® Optimal predictor
® Minimal in size
® Unique

= [he € machine

Mechanism?

C.R.Shalizi and J. P. Crutchfield. “Computational Mechanics: Pattern and Prediction, Structure and Simplicity”. In: J. Stat. Phys. 104 (2001), pp. 817-879.



c-Machines are "Good"”

H |X,]

The number of bits required to store the €
-machine is called the statistical complexity:

H [Future]

C,=H S|

James P. Crutchfield, K. Young. Inferring statistical complexity. Phys. Rev. Lett., 63 (2) (1989), pp. 105-108.
C.R.Shalizi and J. P. Crutchfield. “Computational Mechanics: Pattern and Prediction, Structure and Simplicity”. In: J. Stat. Phys. 104 (2001), pp. 817-879.



Most HMMs are Not Optimal Predictors!

1:1—p
O:p @/\Dlzs

%q / h,# Y Pr(c) H[X| o
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Problem Statement

Given an arbitrary Tinite-state hidden Markov model,
how to get e-machine?



Observe and Update Game

Take our "bad” HMM and track our belief over what A
state we're In:

Observed sequence: A



Observe and Update Game

Observed sequence: A1



Observe and Update Game

Observed sequence: 410



Observe and Update Game

Observed sequence: 4101



Observe and Update Game

Observed sequence: A1011



Observe and Update Game

— BuildupasetR = {;7 :n(w) = Pr (SZ\XOJ =W, 5) = 71') } of

belief states.
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The Infinite State ¢e-Machine

Pr(0,1,0)

The set of belief states R is the attractor of the

"observe and update” stochastic dynamical

system (known as an jterated function system).

Pr(1,0,0)

Alex M. Jurgens, James P. Crutchfield. Shannon Entropy Rate of Hidden Markov Processes. J. Stat.
Phys., 183 (2), 1-18, 2020.



The Infinite State ¢e-Machine

Pr(0,1,0)

The set of belief states R is the attractor of the

"observe and update” stochastic dynamical

system (known as an jterated function system).

This attractor exists and is unique due to

contractivity, but is generically fractal-like.

Pr(1,0,0)

Alex M. Jurgens, James P. Crutchfield. Shannon Entropy Rate of Hidden Markov Processes. J. Stat.
Phys., 183 (2), 1-18, 2020.



The Infinite State ¢e-Machine

Pr(0,1,0)

For most finitely generated hidden Markov

processes, the € machine is an uncountably

infinite state set + transitions between these

States.

Pr(1,0,0)

Alex M. Jurgens, James P. Crutchfield. Shannon Entropy Rate of Hidden Markov Processes. J. Stat.
Phys., 183 (2), 1-18, 2020.



Calculating Shannon Entropy Rate

u(R) is called the Blackwell measure.

Pr(1,0,0)

D. Blackwell. The entropy of functions of finite-state Markov chains. 1957.



Calculating Shannon Entropy Rate

Pr(0,1,0)

u(R) is called the Blackwell measure.

It can be used to calculate the entropy rate:

= | duon  [x1n
R

Pr(1,0,0)

D. Blackwell. The entropy of functions of finite-state Markov chains. 1957.



Calculating Shannon Entropy Rate

Pr(0,1,0)

u(R) is called the Blackwell measure.

It can be used to calculate the entropy rate:

u
R

N L

h/f = lim — H [thnt]
Lo L 0

Pr(1,0,0)

Alex M. Jurgens, James P. Crutchfield. Shannon Entropy Rate of Hidden Markov Processes. J. Stat.
Phys., 183 (2), 1-18, 2020.
D. Blackwell. The entropy of functions of finite-state Markov chains. 1957.



Structure: Statistical Complexity?

Pr(1,0,0)

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension of Stationary, Ergodic Finite-

State Hidden Markov Processes. Chaos 31,083114,2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Structure: Information Dimension

Information in a set

Scale of measurement

Pr(1,0,0)

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension of Stationary, Ergodic Finite-

State Hidden Markov Processes. Chaos 31,083114,2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Statistical Complexity Dimension?

%
Cﬂ 00

AH |R,| - AC,,

dim (R) ~ ——m— = ———
u (B Alne Alne

Pr(1,0,0)

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension of Stationary, Ergodic Finite-

State Hidden Markov Processes. Chaos 31,083114,2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Calculating Information Dimension

Calculate the Lyapunov spectrum:

['= {454 .s Ay}

S.t. A > > > Ay

Kaplan—Yorke conjecture:
XA

| A1 |

Where k is the largest index for which the sum

k
Z A;is positive.
i

P. Frederickson, J. Kaplan, E. Yorke, J. Yorke. (1983). The Lyapunov Dimension of Strange Attractors. J. Diff. Egs. 49 (2): 185-207.




Calculating Information Dimension

For the Lorenz attractor withe = 10, r = 28,

b = 8/3:
= {0.90563,0, — 14.57219}

So the Lyapunov dimension is:

dim, = 2.06215

P. Frederickson, J. Kaplan, E. Yorke, J. Yorke. (1983). The Lyapunov Dimension of Strange Attractors. J. Diff. Egs. 49 (2): 185-207.



New Quantity: The Ambiguity Rate

Entropy rate measures uncertainty in the next
symbol given the present.

h, = H Xy, S, | S

O
O/ \O

<N 4,
IV N TN

Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



New Quantity: The Ambiguity Rate

/: Entropy rate measures uncertainty in the next
/Q symbol given the present.

O_.
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h, = H Xy, S, | S

Ambiguity rate measures uncertainty in prior
symbol given the present.

\O h,=H [X—1»S—1 | So]

A

Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)
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Statistical Complexity Dimension

dim, (R) = k +
| Ay |

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Statistical Complexity Dimension

Entropy rate Ambiguity rate

dimﬂ (R) =k

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Statistical Complexity Dimension

%
Cﬂ 00

AC, . h,—h,+ Y2
dim (R)=—”’=k+¢
g Alne | A1 |

— (Can calculate randomness and structure,
now for infinite states!

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Growth Rate of Predictive Models

AH [Predlctwe states]

N

Entropy rate
Py Ambiguity rate

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Growth Rate of Predictive Models

For a finite state model:

\’ h,—h, =0
1:1—g 1:1

Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Growth Rate of Predictive Models

AH [Predictive states] =h, — h,

Finite states "Every history counts”
hﬂ—hazo hﬂ—ha:hﬂ

1:1—0p
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Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)



Growth Rate of Predictive Models

AH [Predictive states] = hﬂ — h

A

Finite states In general: "Every history counts”
h,—h,=0 h,>h,—h,>0 h,—h,=h,

I1:1—p
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Alexandra M. Jurgens, James P. Crutchfield. Divergent Predictive Memory: The Statistical Complexity Dimension

of Stationary, Ergodic Finite-State Hidden Markov Processes. Chaos 31, 083114, 2021.
Alexandra M. Jurgens, James P. Crutchfield. Ambiguity rate of hidden Markov processes. Phys. Rev. E, 104 (2021)
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The Utility of (Good) Models

H |X,]

H [Future]

His|H[s

Ryan G. James, Christopher J. Ellison, James P. Crutchfield. Anatomy of a bit: Information in a time series observation. Chaos 21, 037109 (2011)

James P. Crutchfield, David P. Feldman. Regularities unseen, randomness observed.: Levels of entropy convergence. Chaos 1 March 2003; 13 (1): 25-54.



