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Models as Hypotheses

As scientists, we evaluate models to

e Assess adequacy for a particular
task (applied science)

e Test a hypothesis (basic science)

e Others...?

The Scientific Method as an Ongoing Process
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Models are the tool scientists
use to translate hypotheses into
testable predictions




Mutual Information as an Evaluation Metric

Shared Information Y =X+¢, ¢~NJ0,0]

. Error Variance vs. Measurement Mutual Information :
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Error Variance vs. Measurement Error Entropy
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Information Theory Hypothesis Testing

What is hypothesis testing?
Are hypotheses true or false?

What does it mean to assign a
probability to a hypothesis?

Proposal: What we really want
to measure when we test a
hypothesis is the amount of
information that hypothesis
provides.

The model is: Z =f(u, 6)
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Information Theory Hypothesis Testing

Problem: Cannot measure information

shared between observations (u, y).

Solution: Approximate by using a
data-driven model. This is as close as
we can get to asking how much
information is in the data themselves,
independent of any conceptual
hypothesis.

Information Content

The model is: Z =f(u, 6)
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1(Z;X,Y)/H(2) [nats/nats]

1Z:XHZ;X,Y) [nats/nats]

Mutual Information as an Evaluation Metric
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There are several ways to calculate
mutual information, which all have
slightly different characteristics.

A histogram (binning) method
effectively discretizes the data at a
specified resolution, and lets you test
models/hypotheses at a particular
level of precision.

The maximum level of precision
depends on quantity of available
data.



