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Key Points:

« Information theory provides
powerful methods to assess causality
and interactions in complex systems

» An understanding of causality is
important in Earth sciences for
process understanding, modeling,
prediction, and decision making

« Information flow, through causality
analysis of bivariate to multivariate
interactions, opens new windows for
Earth system science studies

Debates—Does Information Theory Provide a New
Paradigm for Earth Science? Causality,
Interaction, and Feedback
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most importantly, Wiley formatted my introductory
poem so it looks like we are free-styling it

Come hither, let us lead the way to take a causal view today. Cause and effect are hard to assess, thus
we take the risk of making a mess, but present our thoughts on Information Theory, since variance and
correlation have grown weary. Couplings, synergy, and the causal path can all be determined with a bit

of math. But do they reflect what nature creates? This may be the real debate.
A.E.G.
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a) time-series

variables consider nodes as a time-series variable

(measurements or models)

we can think of interactions between pairs of
variables (how does X influence Y?)
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or triplets, quartets, etc of variables
(how do X and Y drive Z together?)

or a “causal history” where causality is
measured from the entire historical dynamics
(how does every experience in my life lead to
where | am today?)



different IT technigues address these “levels”
at which we may consider causal interactions

example: how do variables measured at a weather station (air temperature, relative humidity, solar
radiation, wind speed) interact on short timescales (1 minute)? Let’s just look at sources to RH....
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conclusion: this opens doors
for component = system understandmg

Causal hypothes

* behaviors like feedback and
synchronization require an expanded view
of “cause and effect”

* potential to compare natural and model
dynamics -

* models provide opportunities to = \
“intervene” in the system L

e [et us move forth into the “causal
revolution” (Pearl 2018)

Figure 3 from Runge et al, Nature Communications 2019
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d) causal history

The target D is driven by the entire evolutionary dynamics of the system.
Two sources DD influence the target D through their causal paths.
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