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Geological and

CONVENTIONAL e
WORKFLOW
Construction of a ot ;ﬁ.ogica. i
continuous (3-D) model — \
from geological data e

=> Quick look at a real example...




Slide from: Courrioux et al., 34th IGC, Brisbane, 2012

In this study, we benefit from different realizations of a model from multiple sets of data
acquired on the same area

Geological contact

~ km’s




Slide from: Courrioux et al., 34th IGC, Brisbane, 2012

In this study, we benefit from different realizations of a model from multiple sets of data
acquired on the same area
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Clearly, we can’t always construct 10(0)(0)
/ separate models...
...but what about a randomised approach?

Great variability far from outcrops

Where Is the reality ? somewhere here ?
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WORKFLOW

Geological modelling
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Continuous geological model

Conventional methods:
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Mesh generation
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—— > Solver, Bc's, initial conditions

=> [ .imitations for automation! Y%

Results of simulation
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Geological and
Geophysical data

Geological modelling

V

Continuous geological model

Technical challenge:

removing the .
e e R O

limiting step »
2 :> Meshing, property distribution
between continuous $

Rock properties

model and mesh

I
—— > Solver, Bc's, initial conditions
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Results of simulation
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Geological and
Geophysical data

Continuous geological model

e Jves
Developed methods ! =
: A it i Geological modellin
to combine implicit A

modelling and

input file generation
with PyYSHEMAT 5
and PYTOUGH ‘> Meshing, Pfor{e;y distribution

Rock properties

(both open source, e
available on
github.com) n

—— > Solver, Bc's, initial conditions

\%

Results of simulation

(Wellmann et al., 2011, 2013)
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Developed methods
to combine implicit
modelling and
input file generation
with PySHEMAT
and PyTOUGH
(both open source,
available on

github.com)

(Wellmann et al., 2011, 2013)

Geological and
Geophysical data
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Now possible:
change position of
geological data
point, automatically
update effect on
simulated tflow

fields




Geological and
Geophysical data
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Developed methods ! GBS

to combine implicit . (Small) Side track:
modelling and Scientific challenge: How to
input file generation ~== evaluate output from multiple
with PySHEMAT 7 (transient) simulation results with
and PyTOUGH [ meaningful measures? |
(both open source, - Approach: (thermal) entropy

available on

github.com)
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TECHNICAL CHALLENGE:
GEOLOGICAL ENSEMBLE MODELLING

Geological and
Geophysical data

—
EoUR g . Consider uncertainties
O | in structural data
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Continuous geological model

~ Automatically generate multiple
\ probable geological models with
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TECHNICAL CHALLENGE:
GEOLOGICAL ENSEMBLE MODELLING

Geological and

~ Geophysical data Scientific challenge:
L 40 how to analyse and visualise
g | e multiple geological modelling
‘ . results?
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Continuous geological model \/

Automatically generate multiple
\ probable geological models with

%—é stochastic approach
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Two outcomes,

equally probable
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<4+—— No uncertainty

'\ Generally: more

outcomes and more
uniform, higher

entropy. Max H for n
outcomes: log,(n)
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EXAMPLE: GREENSTONE BELT,
WESTERN AUSTRALIA

~_ Geological
data points

Relevant geological
structures

odel scale:
50 x 80 x 20 km



EXAMPLE: GREENSTONE BELT,
WESTERN AUSTRALIA

~ Geological
data points

Relevant g 7 .
structt ¢ 1

odel scale:
50 x 80 x 20 km

Information entropy in each cell (transparent: 0)



EXAMPLE: GREENSTONE BELT,
WESTERN AUSTRALIA

[ 1RLLS

Also used in very similar context in TNO map
(www.dinoloket.nl)
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WHERE NEXT?

Link to process simulations
(hydrogeology, geothermal =~
systems, ...)

How to constrain the model
with more observations and
additional data?

How to
estimate a
possible
uncertainty
reduction?
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MUTUAL INFORMATION AND
CONDITIONAL ENTROPY

(a) Map with uncertainties

Unclear boundaries Grid structure
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i Conditional Entropy —H(Xq,Xo,...,X,) |
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MUTUAL INFORMATION AND
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Slice in E-W direction and considered uncertainties

The parameterisation of the geological events contains uncertainties,
and we consider here as uncertain:

Parameters of geological
history:

@ Fault positions and dip
angle (o)

@ Age relationship
(order) of faults (e)

@ Unit thickness (o)

@ Position of
unconformity (e)




Analysis of information entropy

Visualisation of information entropy

© Uncertainties are highest in the
deep parts of the basin;

g @ At shallow depth, only
uncertainty due to depth of
unconformity;

© In shoulders uncertainty due to
stratigraphic layer thickness.

Entropy is calculated for each cell based on estimated unit probabilities
with Shannon’s equation:

H(X) == pi(X)log, pi(X)
i—1




Analysis of information entropy

Assume: we would like to reduce uncertainties about

layer position in basin: where to gather information?

deep parts of the basin;

i @ At shallow depth, only
uncertainty due to depth of
unconformity;

© In shoulders uncertainty due to
stratigraphic layer thickness.

Entropy is calculated for each cell based on estimated unit probabilities
with Shannon’s equation:

H(X) == pi(X)logy pi(X)
i—1




Uncertainty reduction with additional information

Gathering subsequent information at one location ( “drilling™):

Conditional entropy of each
cell given information at
subsequent locations along a
line (“drillhole™):
uncertainty in the model is
reduced with new
knowledge.




Uncertainty reduction with additional information

Gathering subsequent information at one location ( “drilling™):

Conditional entropy of each
cell given information at
subsequent locations along a
line (“drillhole™):
uncertainty in the model is
reduced with new
knowledge.

Multivariate conditional entropy:

remaining uncertainty at each location,
given information of all points on line
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due to underlying structure.
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Uncertainty reduction with additional information

Gathering subsequent information at one location ( “drilling™):

Conditional entropy of each
cell given information at
subsequent locations along a
line (“drillhole™):
uncertainty in the model is
reduced with new
knowledge.

Note the lateral reduction
due to underlying structure.
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Comparison of "drillhole™ positions

Comparison of remaining uncertainty for different drillhole positions

The difference is clearly visible when we compare both results:
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This analysis can give us an insight  where additional information
can be expected to reduce uncertainties.
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MORE IDEAS AFTER THI
WORKSHOP...

Examine “structure” of the joint probabi

S

1ty

tables (and the relationship to the under
model structure)

ying

Deeper exploration of information correlations

(joint entropy for entire model?) -> how much

“information” does the entire model contain?

AIT: test model compression for several
synthetic models?

Apply MaxEnt to model inference problem



Summary

 Methods from information theory:
* |Information entropy for analysis of uncertainties

» Conditional entropy and mutual information for analysis
of correlation and uncertainty reduction

* Reliability filters for geological models (“sanity checks”) to
consider additional geological knowledge -> geological
modelling as an inference problem

 Methods enable us to learn about geological parameter
correlations and information correlation in the subsurface



