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Conclusion

Conclusion from model validation step

First results show that automatic model validation step with additional
constraints is feasible

Consideration of implicit (“soft”) geological knowledge

Can be framed in probabilistic way

Simple example

From simple graben to even simpler example

Reduce the simple graben model to its bare minimum:

From 3-D...

(which is essentially 2-
D)

From 3-D (which is essentially 2-D) to 2-D (which is actually 1-D...)
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How accurate are these models?



Conventional 
workflow

=> Quick look at a real example…

Construction of a 
continuous (3-D) model 
from geological data



Models comparison
> The idea is following  F. Wellmann (2011) and M. Lindsay (2012) works who analyze the effect of data 

variance on model by randomly “shaking” an initial data set .!
!

> In this study, we benefit from different realizations of a model from multiple sets of data 
acquired on the same area

Slide from: Courrioux et al., 34th IGC, Brisbane, 2012

~ km’s

Geological contact Fault



Models comparison

Great variability far from outcrops!
!

Where Is the reality ? somewhere here ?!
 

> The idea is following  F. Wellmann (2011) and M. Lindsay (2012) works who analyze the effect of data 
variance on model by randomly “shaking” an initial data set .!

!
> In this study, we benefit from different realizations of a model from multiple sets of data 

acquired on the same area

Slide from: Courrioux et al., 34th IGC, Brisbane, 2012

~ km’s

Geological contact Fault
Clearly, we can’t always construct 10(0)(0) !

separate models…!
…but what about a randomised approach?



Conventional methods: 
manual iterations

Mesh generation

=> Limitations for automation!

Conventional 
workflow



Technical challenge: 
removing the 
limiting step 

between continuous 
model and mesh
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to combine implicit 
modelling and 
input file generation 
with PySHEMAT 
and PyTOUGH 
(both open source, 
available on 
github.com)
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Developed methods 
to combine implicit 
modelling and 
input file generation 
with PySHEMAT 
and PyTOUGH 
(both open source, 
available on 
github.com)

(Wellmann et al., 2011, 2013)

Now possible:!
change position of 
geological data 
point, automatically 
update effect on 
simulated flow 
fields 

(Small) Side track:!
Scientific challenge: How to 

evaluate output from multiple 
(transient) simulation results with 

meaningful measures?!
Approach: (thermal) entropy 

production
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Technical Challenge: 
Geological Ensemble Modelling

Consider uncertainties 
in structural data

Automatically generate multiple 
probable geological models with 

stochastic approach

Scientific challenge: !
how to analyse and visualise 

multiple geological modelling 
results?!

Approach: Information entropy
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H

Information 
Entropy

Quantitative interpretation

No uncertainty

Two outcomes, 
equally probable 

(“coin case”)

Generally: more 
outcomes and more 

uniform, higher 
entropy. Max H for n  

outcomes: log2(n)

n log

2 1

3 1,58

4 2

5 2,43

6 2,58

Probability of one 
unit

Probability of all 
units

z 
[m

]

p(x) p(x)



Example: Greenstone Belt, 
Western Australia

Relevant geological 
structures

Geological 
data points

Model scale:  
50 x 80 x 20 km 
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Example: Greenstone Belt, 
Western Australia

Relevant geological 
structures

Geological 
data points

Model scale:  
50 x 80 x 20 km Information entropy in each cell (transparent: 0)

Also used in very similar context in TNO map 
(www.dinoloket.nl)



Where next?
• Link to process simulations 

(hydrogeology, geothermal 
systems, …)!

• How to constrain the model 
with more observations and 
additional data?

• How to 
estimate a 
possible 
uncertainty 
reduction?



Where next?
• Link to process simulations 

(hydrogeology, geothermal 
systems, …)!

• How to constrain the model 
with more observations and 
additional data?

• How to 
estimate a 
possible 
uncertainty 
reduction?

(aka Miguel’s “Dirty Work”)



Mutual Information and 
Conditional Entropy



Mutual Information and 
Conditional Entropy

H(Xm|X1, X2, . . . , Xn) = H(X1, X2, . . . , Xn, Xm)

�H(X1, X2, . . . , Xn)
Multivariate 

Conditional Entropy



Back to overview
.

Model slice and uncertainties

Slice in E-W direction and considered uncertainties

The parameterisation of the geological events contains uncertainties,
and we consider here as uncertain:
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Parameters of geological
history:

Fault positions and dip
angle (•)
Age relationship
(order) of faults (•)
Unit thickness (•)
Position of
unconformity (•)



Back to overview
.

Analysis of information entropy

Visualisation of information entropy
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1 Uncertainties are highest in the
deep parts of the basin;

2 At shallow depth, only
uncertainty due to depth of
unconformity;

3 In shoulders uncertainty due to
stratigraphic layer thickness.

Entropy is calculated for each cell based on estimated unit probabilities
with Shannon’s equation:

H(X ) = �
nX

i=1

pi (X ) log2 pi (X )
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Analysis of information entropy

Visualisation of information entropy
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1 Uncertainties are highest in the
deep parts of the basin;

2 At shallow depth, only
uncertainty due to depth of
unconformity;

3 In shoulders uncertainty due to
stratigraphic layer thickness.

Entropy is calculated for each cell based on estimated unit probabilities
with Shannon’s equation:

H(X ) = �
nX

i=1

pi (X ) log2 pi (X )

?
Assume: we would like to reduce uncertainties about 
layer position in basin: where to gather information?



Back to overview
.

Uncertainty reduction with additional information

Gathering subsequent information at one location (“drilling”):
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the graben, uncertainty is
reduced less when drilling to
the same depth.
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given information of all points on line
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Back to overview
.

Comparison of ”drillhole” positions

Comparison of remaining uncertainty for di↵erent drillhole positions

The di↵erence is clearly visible when we compare both results:
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can be expected to reduce uncertainties.
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Comparison of remaining uncertainty for di↵erent drillhole positions
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Model slice and uncertainties

Slice in E-W direction and considered uncertainties

The parameterisation of the geological events contains uncertainties,
and we consider here as uncertain:
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More Ideas after this 
workshop…

• Examine “structure” of the joint probability 
tables (and the relationship to the underlying 
model structure)!

• Deeper exploration of information correlations 
(joint entropy for entire model?) -> how much 
“information” does the entire model contain?!

• AIT: test model compression for several 
synthetic models?!

• Apply MaxEnt to model inference problem



• Methods from information theory: 

• Information entropy for analysis of uncertainties 

• Conditional entropy and mutual information for analysis 
of correlation and uncertainty reduction 

• Reliability filters for geological models (“sanity checks”) to 
consider additional geological knowledge -> geological 
modelling as an inference problem 

• Methods enable us to learn about geological parameter 
correlations and information correlation in the subsurface

Summary


