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Storyline 

• Def (just 1) .. Why complexity important 
• Missing info, info content, randomness, long 

description, low alg prob. 
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Take home 

• Info content data using infotheory is ill defined 
if no complexity control 

• AIT / description length can determine info 
content of single objects with referring to 
underlying distribution 

• Info content is always for a question, depends 
on prior knowledge 
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Outline 

• What / Why complexity? 
• Description length and information content 
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Complexity 

No agreed definition of complexity, but in general: 
• Many parts 
• Many interactions, feedbacks 
• Difficult 
• Complicated 
• Hard to describe 
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Definition of complexity 

• Systems: Nonlin, feedbacks, high-D 
• Weaver: organised vs non organised 
• Networks: number of links/ nodes 
• Computational : resources needed 
• Algorithmic: description length 
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Description length 

• Something that is complex needs long 
description.  

• Need a much information transfer to learn 
about. 

• Optimal description length is not arbitrary. 
Number of short words is limited. 

• Of course still language dependent 
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Language dependence 

• NL : Polder 
• EN: hydrologically separated area with water 

levels controlled by pumps 
• Description length of comprehensive history 

of Dutch water management in English: 
• L_EN (book) = C* L_NL (book) ???? 
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NO! Additive! 

• L_EN (book) = C + L_NL (book) 
• C ? 
• C = dictionary NL  EN 
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Data compression 

• Relates minimal description length to data 
compression 

• Gives bounds and many analogies 
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Why is compression relevant 

• Practical:   harddisk ≠ free 
• Theoretical: compression ⇔ information 

– Compression = learning / inference 
– Compression = quality of model/predictions 
– Minimal compressed file size = info content 

 



Info content and prior knowledge 

• IT: info content = -log(Pobs) 
• Pobs can include prior knowledge 
• Info content = relative to prior 

X? 
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OBJECTIVES 

• Test Zipped size = info content 
• Compress with prior knowledge : conditional 

info content 
• Show parallel compression <> inference 

 
 



Background: compression view 

Plain description of data (Naïve info content) 

Description of data, given 
model  (the unexplained) 

Description of 
Model  (explanation) 

Compress
/explain 

Model complexity Neg. log likelihood 
Ignorance score 

 
 



Shannon view description length 

Signal source, 
Entropy H=1.75 bits 

Signal to describe 



Shannon view description length 

Dictionary 

Naïve code: 
2 bits for each color 



Shannon view description length 

Short codes for frequent events: compress to H=1.75 bps 

Compress 

Dictionary 



Shannon view description length 

Compression, but need dictionary to unzip 
Dictionary is as long as original   no compression 

Compress?? 

Dictionary C ?? 



Shannon view description length 

Unless dictionary is prior 
knowledge for receiver!  

Compress?? 

Dictionary C ?? 



Deeper notion of description 
length 

• Description length depends on language 
• Not just “nouns”, but add grammar 
• Allows more efficient descriptions (recursive) 

 
• Computer program=Full language of math 

(Church-Turing thesis) 



Algorithmic Information Theory 
independently developed by Kolmogorov(1968), Solomonoff (1964) and Chaitin (1966) 



Key concepts of AIT 

• theories are programs for universal computer 
• randomness = absence of patterns  
• structure enables short descriptions 

 
 

 



Correspondence  
code-length <> probability 
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Consequences  

• short description ~ higher probability 
• shorter program  a priori more likely theory 
• Sum over all programs       of              is 1 
• Universal prior over computable functions 
• Use as natural complexity penalization 
 



AIT view 

Output:  data; (X) 

Program for universal computer 

Compress
explain 
learn 

Program length; K(X) 
K(X) kolmogorov complexity is analog to H(X) 
Algorithmic entropy 
 

 
 

Remove redundancy 
Find patterns 



AIT view 

Output:  data; (X) 

Program for universal 
computer 

Compress
/explain 

Program length; K(X|Y) 
 
 

Prior info 
(Y) 

K(Y) 
K(XY) = K(X|Y) + K(Y) 
K(XY) ≤ K(X)    + K(Y) 
 
Info content prior knowledge: 
K(X)-K(X|Y) 



Example application in Hydrology 
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HYDROZIP! 



HydroZIP 

• Coding based on probability distribution: 
– Arithmetic coding 
– Huffman coding 

• Use parametric distributions, not histogram 
• Use temporal dependencies:  

– RLE on zero to exploit dry spells 
– Take differences to exploit autocorrelation 



Approximate K(X) and K(X|Y) by ZIP 

MOPEX data , preprocessed, (X) 

Zipped file.Hzip 

info content | prior 
 
 

Hydro 
info 

Info content prior knowledge: 
ZIP(X)-HydroZIP(X) 

Hydro- 
UNZIP 

Zipped file.zip 

Benchm. 
UNZIP 



Compression experiment: Data 
• MOPEX 431 basins;  P and log(Q) 

 
 

H(logQ) 
(bits) 



Methods: 1) make Hydro(UN)ZIP 

MOPEX data , preprocessed, (X) 

Zipped file.Hzip 

Hydro 
info 

Hydro- 
UNZIP 

Prior hydro knowledge: 
- Parametric distr. 
- Autocorrelation 
- Dry spells 



Methods: 2) look at patterns 

MOPEX data , preprocessed, (X) 

Zipped file.Hzip 

Hydro 
info 

Hydro- 
UNZIP 

Distributions 
- (Log-)normal 
- Skew-Laplace 
- Exponential + P(0) 
- 2 par. Gamma + P(0) 

Dependencies 
- RLE on 0 works? 
- Differencing? 



Methods: 3) do benchmark 

MOPEX data , preprocessed, (X) 

Zipped file.Hzip 

Hydro 
info 

Hydro- 
UNZIP 

Zipped file.zip 

Benchm. 
UNZIP 

Best of: 
Gzip 
Bzip2 
JPG-LS  
PPMD 
LZMA 
ARJ 
PNG 
WavPack 



Methods: 4) compare 

MOPEX data , preprocessed, (X) 

Zipped file.Hzip 

info content | prior 
 
 

Hydro 
info 

Info content prior knowledge: 
ZIP(X)-HydroZIP(X) 

Hydro- 
UNZIP 

Zipped file.zip 

Benchm. 
UNZIP 



Hydro(UN)ZIP: 
RLE on dry spells 

Take differences 

Try parametric 
distributions 

File is  complete 
description 



coding 



decoding 



Some results 



Compression/entropy for P 



Which algorithm zips P best? 



Rainfall compressibility  



Which algorithm zips Q best? 





 temporal compression Q 



HydroZIP often beats benchmark ! 

HydroZIP 
better 

Benchm. 
better 



Conditional Kolmogorov Complexity 

• Estimated by HydroZIPped size 
• Takes into account all/some dependencies 
• Useful to estimate info content|prior 
• Posterior-complexity penalized likelihood 

 



Model complexity 

• Is integral part of info content 
• Should be accounted for in model selection 
• Unless model is prior knowledge 
• AIT / compression naturally includes this 



Prior knowledge 

• Is free model complexity 
• Helps compression 
• Influences info content of data 

 
 



Conclusions case study 

• Description length /info content =f(prior knowledge) 
• HydroZIP < ZIP, demonstrates this 
• Model inference ~ compression 

 
 
 
 



 



ESTIMATING ENTROPY OF DATA 



AIT perspective on estimating 
entropy of data 

• Entropy is a measure of a probability 
distribution not a time series 

• It measures uncertainty of a state of mind 
• Its calculation always defines a question and 

adds prior knowledge. 
• Be careful in multi-dimensional cases! 
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The Curse of dimensionality  

H(X,Y,Z)= 
6.64 bits 
12.97 bits 

H(X,Y)= 
6.35 bits 
8.64 bits 

H(X)= 
4.18 bits 
4.32 bits 



DATA PROCESSING INEQUALITY 



Info content and prior knowledge 

• What if only one observation? 
• Or PUB ? 

 

X? 

,     ≠ 

+         =7 
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What we learn from die example 

• Adding observed variable helps 
• model adds (on average) true information to 

predictions, if true “physics” added 
• importance fades with more data  
• But was information already there in 

predictor? 
• H(Y|X,model) < H(Y|X) ??  
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H(Y|X) ill defined for data 
• Not defined for data, but for distribution 
• Loads of data needed 
• Or involves model 
• Can model be arbitrarily complex? 
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Kolmogorov complexity 

• K(X) 
• K(Y) 
• K(Y*) 
• K(Model) 
• K(DEM) 
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AIT view 

data; (XY) 

Program for universal 
computer 

Compress 

Program length; 
K(XY|M) 

 
 

Prior info 
(M) 

K(M) 
K(XYM) = K(XY|M) + K(M) 
K(XYM) ≤ K(XY)    + K(M) 
 
Info content prior knowledge: 
K(XY)-K(XY|M) 



DPI in AIT 
• K(Y*)<K(X)+K(model) 
• K(Y)- K(Y|Y*) ≤K(Y*) 
• K(Y|Y*) = K(Y|X,model) ≥ K (Y|X,system) 
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Q*(t)=f(P(t) P(t)  Q*(t) 

K(M):Mass balance, DEM, Land-use 



Solution to paradox? 

1. Yes, info is always lost 
– Compared to imaginary infinite data set 
– Or compared to imaginary perfect model 

2. No, model adds info 
– When prior justified complexity present 
– Most important with small datasets 
– Model must be more than hypothesis 
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Small dataset! 

63 
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Conclusions 

• Info can only be destroyed not created 
• DPI holds, but model can contain info 
• Data  PMF not straightforward 
• So benchmark info in data dubious 
• AIT formulation for DPI = more general 



Thanks! 

comments? : Steven.weijs@epfl.ch 
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Application: info in data 

• Kolmogorov complexity could be seen as 
measure of info content in data 
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Zip Q zip P zip PQ 

• Explain learning 
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Data vs. information : P 
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Bits/ 
sample 



Which algorithm zips P best? 



naive climatological after forecast after recalibration after observation
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Information interpretation 
  

   
  

  R
em

ai
ni

ng
 u

nc
er

ta
in

ty
 (

bi
ts

) 


 

tr
ue

 in
fo

 

m
is

si
ng

 in
fo

 

in
fo

 g
ai

n 

w
ro

ng
 in

fo
 



Information flows 
Environment 

Observations 

Models 

Predictions 

Decisions 

Environment + utility 
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Two types of uncertainty 

Perceived uncertainty 
• Entropy 
• Expected surprise about 

truth if uncertainty estimate 
is correct 

• Best guess of average actual 
uncertainty 

True uncertainty 
• Actual surprise experienced 

when truth is revealed 
• Only possible to evaluate 

ex-post 
• Ideally equal to perceived 

uncertainty on average 
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Two types of information 

A message 
• Changes pmf (obs) 
• Or pmf of pmf’s (multhyp) 
• E.g. coin is tested and fair 
• Does not contain info for 

bet itself 
• But does contain info about 

future learning from obs. 
• Both true and perceived 

uncertainty might change 
 

True message 
• Moves pmf closer to 

rational one to have with 
new piece of info xxx?? 

• Will on average reduce true 
uncertainty.  

• But may not in single 
instance (good decision can 
turn out wrong in hindsight) 

• Might increase perceived 
uncertainty (solve previous 
over-conditioning) (swan) 
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