On information and complexity

Information, complexity, description length, data compression and their application in hydrology

Steven Weijs Steven.Weijs@ubc.ca

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Storyline

- Def (just 1) .. Why complexity important
- Missing info, info content, randomness, long description, low alg prob.

Take home

- Info content data using infotheory is ill defined if no complexity control
- AIT / description length can determine info content of single objects with referring to underlying distribution
- Info content is always for a question, depends on prior knowledge

Outline

- What / Why complexity?
- Description length and information content

Complexity

No agreed definition of complexity, but in general:

- Many parts
- Many interactions, feedbacks
- Difficult
- Complicated
- Hard to describe

Definition of complexity

- Systems: Nonlin, feedbacks, high-D
- Weaver: organised vs non organised
- Networks: number of links/ nodes
- Computational : resources needed
- Algorithmic: description length

Description length

- Something that is complex needs long description.
- Need a much information transfer to learn about.
- Optimal description length is not arbitrary. Number of short words is limited.
- Of course still language dependent

Language dependence

- NL : Polder
- EN: hydrologically separated area with water levels controlled by pumps
- Description length of comprehensive history of Dutch water management in English:
- L_EN (book) = C* L_NL (book) ????

NO! Additive!

- L_EN (book) = C + L_NL (book)
- C ?
- C = dictionary NL \rightarrow EN

Data compression

- Relates minimal description length to data compression
- Gives bounds and many analogies

Why is compression relevant

- Practical: harddisk ≠ free
- Theoretical: compression \Leftrightarrow information
 - Compression = learning / inference
 - Compression = quality of model/predictions
 - Minimal compressed file size = info content

Info content and prior knowledge

- IT: info content = -log(P_{obs})
- Pobs can include prior knowledge
- Info content = relative to prior

OBJECTIVES

- Test Zipped size = info content
- Compress with prior knowledge : conditional info content
- Show parallel compression <> inference

Background: compression view

Short codes for frequent events: compress to H=1.75 bps

signal		code words]				
event	freq	A	В	С					
CC	0.5	00	0						
ΥY	0.25	01	10						
GG	0.125	10	110						
RR	0.125	11	111						
YYCCCCRRCCGGYYCC	1			0	Dictio	nar	уС?	?	
YYCCCCCRRCCGGYYCC									
	0	100001	L000110	100	CODE A:	16	bits,	2/color	
	1	000111	<mark>011010</mark>	0	CODE B	14	bits,	1.75/color	
					CODE C	: 1	bit ,	.125/color	
					Compress?	<u>(</u>			

Compression, but need dictionary to unzip Dictionary is as long as original \rightarrow no compression

	signal	code words			ds				
	event	freq	A	В	С				
	CC	0.5	00	0					
	ΥY	0.25	01	10					
	GG	0.125	10	110					
	RR	0.125	11	111					
	YYCCCCRRCCGGYYCC	1			0	Dictior	nar	уС?	?
-	YYCCCCCRRCCGGYYCC								
		0	100001	L <mark>00011</mark> 0	100	CODE A:	16	bits,	2/color
		1	000111	L011010	0	CODE B:	14	bits,	1.75/color
			<u> </u>			CODE C:	1	bit ,	.125/color
					I	Compress			

Unless dictionary is prior knowledge for receiver!

Deeper notion of description length

- Description length depends on language
- Not just "nouns", but add grammar
- Allows more efficient descriptions (recursive)

 Computer program=Full language of math (Church-Turing thesis)

Algorithmic Information Theory

independently developed by Kolmogorov(1968), Solomonoff (1964) and Chaitin (1966)

Key concepts of AIT

- theories are programs for universal computer
- randomness = absence of patterns
- structure enables short descriptions

Consequences

- short description ~ higher probability
- shorter program \rightarrow a priori more likely theory
- Sum over all programs M_i of $2^{-|M_i|}$ is 1
- Universal prior over computable functions
- Use as natural complexity penalization

AIT view

AIT view

Example application in Hydrology

HydroZIP

- Coding based on probability distribution:
 - Arithmetic coding

– Huffman coding

- Use parametric distributions, not histogram
- Use temporal dependencies:
 - RLE on zero to exploit dry spells
 - Take differences to exploit autocorrelation

Approximate K(X) and K(X|Y) by ZIP

Compression experiment: Data

• MOPEX 431 basins; P and log(Q)

Methods: 1) make Hydro(UN)ZIP

Methods: 2) look at patterns

Methods: 3) do benchmark

Methods: 4) compare

coding

decoding

Some results

Compression/entropy for P

Which algorithm zips P best?

Rainfall compressibility

temporal compression Q

HydroZIP often beats benchmark !

Conditional Kolmogorov Complexity

- Estimated by HydroZIPped size
- Takes into account all/some dependencies
- Useful to estimate info content | prior
- Posterior-complexity penalized likelihood

Model complexity

- Is integral part of info content
- Should be accounted for in model selection
- Unless model is prior knowledge
- AIT / compression naturally includes this

Prior knowledge

- Is free model complexity
- Helps compression
- Influences info content of data

Conclusions case study

- Description length /info content =f(prior knowledge)
- HydroZIP < ZIP, demonstrates this
- Model inference ~ compression

ESTIMATING ENTROPY OF DATA

AIT perspective on estimating entropy of data

- Entropy is a measure of a probability distribution not a time series
- It measures uncertainty of a state of mind
- Its calculation always defines a question and adds prior knowledge.
- Be careful in multi-dimensional cases!

The Curse of dimensionality

25 👡

DATA PROCESSING INEQUALITY

Info content and prior knowledge

- What if only one observation?
- Or PUB ?

What we learn from die example

- Adding observed variable helps
- model adds (on average) true information to predictions, if true "physics" added
- importance fades with more data
- But was information already there in predictor?
- H(Y|X,model) < H(Y|X) ??

H(Y|X) ill defined for data

- Not defined for data, but for distribution
- Loads of data needed
- Or involves model
- Can model be arbitrarily complex?

Kolmogorov complexity

- K(X)
- K(Y)
- K(Y*)
- K(Model)
- K(DEM)

AIT view

K(M):Mass balance, DEM, Land-use

- $K(Y|Y^*) = K(Y|X, model) \ge K(Y|X, system)$
- $K(Y) K(Y | Y^*) \leq K(Y^*)$
- K(Y*)<K(X)+K(model)

DPI in AIT

Solution to paradox?

- 1. Yes, info is always lost
 - Compared to imaginary infinite data set
 - Or compared to imaginary perfect model
- 2. No, model adds info
 - When prior justified complexity present
 - Most important with small datasets
 - Model must be more than hypothesis

Small dataset!

Conclusions

- Info can only be destroyed not created
- DPI holds, but model can contain info
- Data \rightarrow PMF not straightforward
- So benchmark info in data dubious
- AIT formulation for DPI = more general

Thanks!

comments? : Steven.weijs@epfl.ch

Application: info in data

• Kolmogorov complexity could be seen as measure of info content in data

Zip Q zip P zip PQ

• Explain learning

Weijs, S. V.; van de Giesen, N. & Parlange, M. B. **Data compression to define information content of hydrological time series** *Hydrology and Earth System Sciences*, **2013**, *17*, 3171-3187

Weijs, S. V.; van de Giesen, N. & Parlange, M. B. HydroZIP: How Hydrological Knowledge can Be Used to Improve Compression of Hydrological Data, *Entropy*, **2013**, *15*, 1289-1310

Which algorithm zips P best?

Information interpretation

Information flows

Two types of uncertainty

Perceived uncertainty

- Entropy
- Expected surprise about truth if uncertainty estimate is correct
- Best guess of average actual uncertainty

$$H(\mathbf{p}) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i}$$

True uncertainty

- Actual surprise experienced when truth is revealed
- Only possible to evaluate ex-post
- Ideally equal to perceived uncertainty on average

 $\log \frac{1}{p_i}$
Two types of information

A message

- Changes pmf (obs)
- Or pmf of pmf's (multhyp)
- E.g. coin is tested and fair
- Does not contain info for bet itself
- But does contain info about future learning from obs.
- Both true and perceived uncertainty might change

True message

- Moves pmf closer to rational one to have with new piece of info xxx??
- Will on average reduce true uncertainty.
- But may not in single instance (good decision can turn out wrong in hindsight)
- Might increase perceived uncertainty (solve previous over-conditioning) (swan)