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Betweenness Centrality for Amazon 

Rainfall, Boers et al. (2013)

Small World Network, 

Watts and Strogatz (1998)

River Basin Power Law Scaling, Zaliapin et al. (2010)

Control Centrality, Liu et al. (2012)

Classic Network Theory 

Applications (are limited)
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Complex systems generally feature coupling 

and feedback between many nodes,  

producing self-organizing subsystem 

behavior, and/or thresholds where key 

couplings turn on and off and 

qualitatively different system states 

emerge (Kumar 2007, Liu et al. 2007).

• Hierarchies of self-organizing   

subsystems can emerge via feedback.

• Connections have characteristic 

timescales at which processes operate.

• Connections have a type, direction, and 

strength (and possibly follow rules)

• In a multitype network, connections and 

nodes may be qualitatively different.
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A Process Network (PN) is a network of 

feedback loops and the associated 

timescales that depicts the magnitude 

and direction of flow between the 

different subsystems. The PN graph itself 

defines the system state. (Ruddell and 

Kumar, 2009a)

Process Networks
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We can robustly observe short-timescale dynamical sensitivity of 

ecosystems to climate forcings using advanced statistics to infer 

DYNAMICAL PROCESS NETWORKS. (Transfer Entropy, Schreiber 2000)
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Ruddell and Kumar (2009a)
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Thin Arrows: Type-II coupling

Thick Arrows: Type-III coupling

Precipitation

Air Temperature

Carbon Productivity

A Dynamical Process Network (DPN) for Illinois Corn+Climate

(a graph-based state based on ‘fast’ functional dynamics)

30 minute eddy 

covariance and 

meteorology data
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1. Green-Up / Tillering (7/1 ~ 7/24)
rice transplanting on 6/19, water-logged
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2. Peak Growth / Heading (7/25 ~ 8/18)

water drained on 7/25, fertilized on 8/19
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3. Grain-Filling (8/26 ~ 9/18)

irrigation/drainage from 8/26
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4. Senescence (9/26 ~ 10/15)
drained on 9/26, harvest on 10/16

LAI = 5.0   Precip = 40 mm
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5. Post-Harvest (10/27 ~ 11/19)

barley sowing on 10/26
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Information Flows to 

“slow” forcing factors 

is often exponential
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Thin Arrows: Type-II coupling

Thick Arrows: Type-III coupling
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An Experimental Approach for Ecosystem Change

• ‘Slow’ Dynamics define SYSTEM STATE (or ‘macrostate’)

• To robustly predict long-term ecosystem change we need to 

observe LONG TERM DYNAMICS OF STATE CHANGE, but we don’t 

(yet) have data (paleo?)

• We can however observe the rich SHORT TERM ‘FAST’ DYNAMICS

of function and structure of the subsystems within each 

macrostate (the Process Networks)

• By modeling (marginal) changes in those Process Networks as an 

ELASTIC RESPONSE to (marginal) changes in ‘slow’ forcing factors, 

we have the capability to estimate the response of ecosystem 

state (and process) to changes in forcings.



We find that Process Network Elasticity 

to ‘slow’ forcing factors can often be 

modeled using exponential functions 

derived from econometrics; these also 

separate combined and indirect effects.

Seasonal “slow” Forcing Factors are:

• Temperature

• Radiation

• Precipitation

• EVI/phenophase

Optimize for coefficients using OLS

Coefficients are the elasticities



Big Ecological Data: FLUXNET
Thousands of site-years of ‘fast’ dynamics data for diverse ecosystems



Elasticity coefficients are fitted based on OLS for all FLUXNET sites’ observed 

monthly variations in DPN and ‘slow’ forcing factors, then extrapolated to 

the world using an ANN based on ecosystem type, geography, and climate



Elasticity coefficients are fitted based on OLS for all FLUXNET sites’ observed 

monthly variations in DPN and ‘slow’ forcing factors, then extrapolated to 

the world using an ANN based on ecosystem type, geography, and climate



Model R2 for Temperature > NEE coupling is better in some 

ecosystems than others, meaning we know more about the drivers 

of ecological state change for some ecosystems than others.

International Global Biosphere Programme (IGBP) vegetation class. CRO: croplands; CSH: closed 

shrublands; DBF: deciduous broadleaf forests; EBF: evergreen broadleaf forests; ENF: evergreen 

needleleaf forests; GRA: grasslands; MF: mixed forests; OSH: open shrublands; SAV: Savannas; WET: 

permanent wetlands; WSA: woody Savannas. 



• Initial investigation succeeds in explaining changes in ecosystem 
functional state by studying a simplified subset of the DPN

• Elasticity to seasonal temperatures is by far the strongest, 
followed by phenophase and radiation, then precipitation

• Large differences in sign and magnitude of elasticity are 
present, meaning different ecosystems respond differently and 
are different distances from state transition thresholds

• There are large differences in state transition predictability 
based in part on ecosystem type. Poor predictability means the 
observed variation of DPN information content does not match 
the set of four ‘slow’ forcing factors we tested.

• This work can corroborate & critique ecological process models

• LaThuille-DPN v1.0 database contains complete monthly DPN’s 
and climate & satellite subsets for all of FLUXNET (LaThuille)

• ProcessNetwork v1.5 is released, with wavelets etc.

Conclusions



Abstract

Under the context of global climate change, it is important to understand the direction 

and magnitude of different ecosystems respond to climate at the global level. In this study, 

we applied dynamical process network (DPN) approach combined with eco-climate 

system sensitivity model and used the global FLUXNET eddy covariance measurements (subdaily

net ecosystem exchange of CO2, air temperature, and precipitation) to access eco-climate 

system sensitivity to climate and biophysical factors at the flux site level. Eco-climate system 

sensitivity at flux timescales was estimated at the global flux sites and extrapolated to all possible 

land covers by employing artificial neural network approach. The extrapolation utilizes MODIS 

phenology and land cover products, the long-term climate GLDAS-2 product, and the 

GMTED2010 Global Grid elevation dataset. We found that the eco-climate system dynamical 

process structures are more sensitive to seasonal temperature, than to radiation, phenology, or 

(lowest sensitivity) precipitation. Interestingly, if global temperature continues rising, the 

temperature-to-NEE process coupling may increase in tropical rain forest areas while decreasing 

in tropical desert or Savanna areas. At the same time, phenology showed a positive effect on the 

temperature-to-NEE process coupling at all pixels, so increased greenness increases the 

importance of temperature to carbon dynamics and consequently carbon sequestration globally. 

This work is unique in that it provides a theoretically independent and complex system based 

means of assessing the sensitivity of global ecosystem processes to climate change, and it can 

therefore be used to critique or corroborate the findings of process based ecosystem models.


