### Information sharing in eco-hydrologic systems: synergy, uniqueness, and redundancy



#### Praveen Kumar and Allison Goodwell

Civil and Environmental Engineering, UIUC Information Theory Workshop April 2016





Earth and Space Science Fellowship (NESSF)



Intensively Managed Landscape Critical Zone Observatory (IML-CZO)



### **Complexity and Emergence**





Which number will you bet on?

Which number will you bet on now?

Incomplete question unless we define what interaction we are looking for?  $X_1+X_2$ ,  $Min(X_1,X_2)$ , others...  $H(X1) = H(X2) = \log_2 6 = 2.58 \text{ bits}$ H(Y) = H(X1+X2) = 3.274 bits < 2\*2.58

Randomness

Emergence Order

Spontaneous reduction in uncertainty due to (synergistic) Interactions of elementary behavior in an open system

Whole is greater than the sum of the parts

#### Partial Information Decomposition



**Question**: Is synergistic information associated with emergent behavior?

#### Link to Lattice Theory



### Partial Information Decomposition



**Question**: Is synergistic information associated with emergent behavior?

#### estimating redundant information

I(Y; X1, X2) = U(Y; X2) + U(Y; X2) + R(Y; X1, X2) + S(Y; X1, X2)

One of the proposed estimates of R



## Simple examples: uniform and Gaussian distribution

#### For Sum of Two Die Rolls: $H(X1) = H(X2) = \log_2 6 = 2.58 \text{ bits}$ S = 3.27 - (0.689 + 0.689 - 0) = 1.896 bits H(Y) = H(X1 + X2) = 3.274 bits $I(X1;Y) = 0.689 \ bits = U1 = U2$ Synergy For sum of two Gaussian variables: $R_{\min} = \max \left| 0, \frac{1}{2} \ln \left( \frac{(\sigma_{x1}^2 + \sigma_{x2}^2 + \rho \sigma_{x1} \sigma_{x2})}{2\pi e \sigma_{x1}^2 \sigma_{x2}^2 (1 - \rho^2)^2} \right) \right| \qquad R_{\max} = \frac{1}{2} \ln \left( \frac{(\sigma_{x1}^2 + \sigma_{x2}^2 + \rho \sigma_{x1} \sigma_{x2})}{(1 - \rho^2) \max(\sigma_{x1}^2, \sigma_{x2}^2)} \right) \overset{(s)}{\Rightarrow} 0.5$ -0.5 0.5 0 $R = R_{\min} - \frac{\frac{1}{2}\ln(1-\rho^2)}{\ln(2\pi e\min(\sigma_{x1}^2, \sigma_{x2}^2))} \left(R_{\max} - R_{\min}\right)$ 0.6 uhg 0.4 -0.5 0 0.5 -1 $S = \frac{1}{2} \ln \left( \frac{2\pi e \sigma_{x1}^2 \sigma_{x2}^2}{(1 - \rho^2)^2 (\sigma_{x1}^2 + \sigma_{x2}^2 + \rho \sigma_{x1} \sigma_{x2})} \right) + R$ H 0.5 -0.5 0.5

#### studying an ecohydrologic network with the S-R-U approach



## perturbations alter interactions and can lead to shifts in behavior



# network of time dependencies is established using information theory



#### network links have synergistic, redundant, and unique components

(Williams and Beer, 2011)

$$I(X_{tar}; X_{s1}, X_{tar,\tau}) = U(X_{tar}; X_{tar,\tau}) + U(X_{tar}; X_{s1}) + R(X_{tar}; X_{s1}, X_{tar,\tau}) + S(X_{tar}; X_{s1}, X_{tar,\tau})$$



unique information from each source individually

redundant information

synergistic information provided by sources together

for any source → target link:
maximum R (redundancy with another source)
maximum S (synergy with another source)

\*pairwise comparison of links: for example, X<sub>s3</sub> link might be most redundant with X<sub>s1</sub> link, but X<sub>s4</sub> link may be most synergistic with X<sub>s1</sub>



### S-R-U can reveal different types of feedbacks/links in network

 $X_{i}(t) = \frac{\varepsilon}{k_{i}} \sum_{j=1}^{N} w_{j,i} \left[ f(X_{j}(t - \tau_{j,i})) \right] + (1 - \varepsilon)z \quad \text{coupled chaotic logistic + noise}$ 



### information along the path to synchronization $X_i(t) = \frac{\varepsilon}{k_i} \sum_{j=1}^N w_{j,i} [f(X_j(t-\tau_{j,i}))] + (1-\varepsilon)z$

look at detected measures of lagged MI and TE for this original  $4 \rightarrow 7$  link



# information along the path to synchronization

look at detected measures of lagged MI and TE for this original  $4 \rightarrow 7$  link



### for test cases, changes in S-R-U shift as links are added



redundancy due to feedbacks, nodes synchronize in some way uniqueness

all sources are independent or partially dependent synergy multiple sources provide more information together

### we use weather station data to explore these interactions

Sangamon Forest Preserve Intensively Managed Landscapes (IML) CZO

Fisher

Bondville

SFP weather station



#### knowing our nodes:

| air temperature   | Та   |
|-------------------|------|
| wind direction    | WD   |
| wind speed        | WS   |
| relative humidity | RH   |
| leaf wetness      | Lwet |
| rainfall          | PPT  |
| radiation         | Rg   |

#### with high temporal resolution data, we identify interactions on sub-daily scale



II. Sh

## S,R,U measures indicate different types of interactions and feedbacks



#### nodes are both sources and targets of S-R-U, but interaction strengths vary









# conclusion: an information approach can reveal ecosystem responses





Allison Goodwell graduate student, University of Illinois <u>allison@goodwell.net</u>





Earth and Space Science Fellowship (NESSF)



Intensively Managed Landscape Critical Zone Observatory (IML-CZO)

