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Familiarity breeds the illusion of understanding
Anonymous



George Boole and Boolean Logic

George Boole was the inventor of
Boolean Logic.

In 1854 he published:

“An Investigation of the Laws of
Thought, on Which are Found(?d the George Boole (1815 — 1874)
Mathematical Theories of Logic and

Probabilities”

Since that time, HUNDREDS OF THOUSANDS of papers
have been published on this topic.
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Claude Shannon and Information Theory

In what is perhaps the most important
Masters Thesis of the 20t Century,

Claude Shannon realized that Boolean

logic could be used to optimize arrays of
electromagnetic relays used in switching
telephone systems.

With this insight that switches could emulate Boolean logic
operations, we entered the Computer Age!
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Claude Shannon and Information Theory

Years later at AT&T Bell Labs,

Claude Shannon derived a logically
consistent way of quantifying the
amount of information that could be
transferred in a communication channel

Claude Shannon (1916 — 2001)
This resulted in the Shannon Entropy and Information Theory!

1
H(X) = XEZX)p(x) Iogm = —XGZXD(X) log p(x)
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Inferential Reasoning

Rev. Thomas Bayes Richard T. Cox Edwin T. Jaynes
(1702 — 1761) (1898 — 1991) (1922 - 1998)

The extension of Boolean logic to Bayesian Probability Theory
extends the deductive logic of a traditional computer to inferential
reasoning, which is capable of handling uncertainty.
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Expectation and Surprise!



Expectation and Surprise

When Henry was born, he had no
Information about the world.

All things were essentially equally
probable.

He was equally surprised by
everything.

p() | |

X

All states equally probable.
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Expectation and Surprise

Henry now has some idea that
some events are more probable than

others.

He is now sometimes surprised!

p(x)
X

Some states are common and
others rarely occur!
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surprise

We use X to denote a particular state of the system out of a set of possible
states X

The surprise is large for improbable states and small for probable states.

1
p(X

h(x) = log



surprise

The surprise is large for improbable states and small for probable states.

1
h(x) =log——
(x) = log o(%)

Averaging the surprise over all of the possible states of the system gives a
measure of our uncertainty about the states of a system:

1
H(X) = x;p(x) Iogm = —XEZXD(X) log p(x)

which is called the Shannon entropy.



Joint Entropy

If the system states can be described with multiple parameters, the entropy is
computed by averaging over all possible states

H(X,Y) = —=> > p(x,y)log p(x,y)

xe XyeY

This is called the Joint Entropy, since it describes the entropy of the states of X
and Y, which jointly describe the system. You can think of Xand Y as
representing subsystems of the original system XxY.

H(X) H(Y)

H(X,Y)



Mutual Information

One can consider a joint system which is composed from joining two systems.
In this case, an important quantity is the difference of entropies,

MI(X,Y) = HX)+HY)=H(X,Y)

This is called the Mutual Information (MI) since it describes the amount of
information that is shared between the two subsystems.

H(X) H(Y)

MI(X,Y)
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The Laws of Nature



Paradigm Shift

From Where do the Laws of Nature Originate?



Paradigm Shift

From Where do the Laws of Nature Originate?

Laws are fundamental and are dictated by God or Mother
Nature or Historical Accident

It is widely believed that the Laws of Nature reflect
underlying order in the universe



Paradigm Shift

From Where do the Laws of Nature Originate?

Laws are fundamental and are dictated by God or Mother
Nature or Historical Accident

Laws are based on fundamental symmetries

Laws reflect the optimal means by which one can process
Information about the universe



Paradigm Shift

From Where do the Laws of Nature Originate?

Dictated > Implies they must be discovered

Symmetries I:> laws are relations enforcing symmetries

Optimal Information Processing probability and entropy



Paradigm Shift

From Where do the Laws of Nature Originate?

Dictated E> Implies they must be discovered

Symmetries E> laws are relations enforcing symmetries

Optimal Information Processing E> probability and entropy

These latter two paradigms imply that Laws might be derived!
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Information Physics

Symmetries Optimal Information Processing
Consistent Quantification Physics as Inference
Cox, Jaynes, Knuth and Skilling Jaynes
Quantification of Statements Statistical Mechanics as Inference
Maximum Entropy

Knuth

Quantification of Questions Caticha, Johnson, Cafaro, Nawaz,
Abedi, Ipek, Bartolomeo, etc.

Goyal, Knuth, Skilling Entropic Dynamics

Quantum Mechanics

(Quantified Measurement Sequences) Dewar, Lorenz, Martyushev, Wang, etc

Maximum Entropy Production

Knuth, Bahreyni and Walsh
Special Relativity

Spacetime Physics

Relativistic Quantum Mechanics




Maximum Entropy

Shortly after Shannon’s work on
Information Theory, Ed Jaynes realized
that the Shannon Entropy was the same
guantity as the entropy in statistical
mechanics. This led to the development
of:

Edwin T. Jaynes ' o _
(1922 — 1998) The Principle of Maximum Entropy

where one assigns probabilities that maximize the
entropy subject to any known constraints. In this sense
statistical mechanics is a theory of inference.
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Maximum Entropy

The 1dea behind

The Principle of Maximum Entropy
IS to assign probabilities that are
consistent with what is known, but are
maximally ignorant otherwise (thereby
not accidentally assuming something

Edwin T. Jaynes _ _
(1922 — 1998) Inappropriate)
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Maximum Entropy Production

Maximum entropy production is a similar concept
applied to dynamical systems.

—
SR ;
s N

To paraphrase an
analogy made by
Brendon Brewer:

£
.....

If it Is true that many ways lead to the summit, then if you
are on a path, you will very likely find your way to the
summit!

4/24/2016 Knuth — SUNY Albany
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Information Theory

It was a matter of great debate from the
1950s through the 2000s as to whether
Information Theory was applicable to a
wider array of problems than the
communication channels for which it was
developed.

Shannon weighed in on this debate
stating that he did not believe that
Information Theory was applicable
outside of communication channels.
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Fundamental Questions



In graduate school | asked:

Why when | combine one crayon with two
crayons

do | always get three crayons

1+2=3
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1 =

v(AUB) =v(A) + v(B)



_Bns 1)

v(AUB) =v(4) +v(B) —v(ANB)
volume

Knuth, MaxEnt 2003



_Bns 1)

S(AUB) =s(4) +s(B) —s(ANB)
surface area

Knuth, MaxEnt 2003
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Pr(Av B|1)=Pr(A|)+Pr(B|1)=Pr(AAB|I)

sum rule of probability

Knuth, MaxEnt 2003



I(A; B) = H(A) + H(B) — H(A, B)

mutual information

Knuth, MaxEnt 2003



max(a,b) = a+ b —min(a,b)

polya’s min-max rule

Knuth, MaxEnt 2003



log (LCM (a, b))
= log(a) + log(b) —log(GCD(a, b))

number theory identity

Knuth, MaxEnt 2009



Clearly, my original question at to why

results in

1+2=3
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Is related to many problems, but specifically this one:

why the probability of the disjunction of two
statements A and B given | results in

Pr(Av B|1)=Pr(A|)+Pr(B|1)=Pr(AAB|I)



the essential content of both statistical
mechanics and communication theory, of
course, does not lie in the equations; it lies in
the ideas that lead to those equations

E. T. Jaynes



the essential content

does not lie in the equations; it lies in
the ideas that lead to those equations
E. T. Jaynes



the essential content

lies in
the ideas that lead to those equations



A MODERN PERSPECTIVE



Measure what is measurable,
and make measurable that which is not so.
Galileo Galilei



Lattices

Lattices are partially ordered sets where each pair of
elements has a least upper bound and a greatest lower

bound
A B D
2 o & v 9 8
y |
C 4 6 9
abc |/\|
/’\ 2 3

~1 ]

alblc

~N— N — W

a|lbc blac clab \///



Lattices

Lattices are Algebras

Structural Operational
Viewpoint Viewpoint
avb=0D
asb <

anb=a



Lattices

Sets, Is a subset

Structural Operational _
Viewpoint Viewpoint of ach < avb=0b
anb=a
a<h < avb=Db  pgsitive Integers,
anb=a Divides lcm(a,b) =b
alb <
ged(a,b) =a
Assertions,
Implies avb=b Integers, Is less than or
a—>bh < equal to max(a,b) =b
anb=a a<b

min(a,b) =a



Quantification

quantify the partial order = assign real numbers to the elements

{a b, c)

X €EL - R
SNy T

(a,b} {ac) {bc/

| <X X
(a}” " (b} el

Require that quantification be consistent with the structure.
Otherwise, information about the partial order is lost.



Local Consistency

Any general rule must hold for special cases
Look at special cases to constrain general rule

Enforce local consistency

X Vy Fxevy) =f@) @ )

7N\

fixel - R

where @ is an unknown operator
to be determined.



Associativity of Join

Write the same element two different ways

xV(yVvz)=x Vy)Vz
which implies

fOBFOBf@)=FDFH) ® f(2)

Note that the unknown operator @ is nested in
two distinct ways, which reflects associativity



Associativity Equation

This is a functional equation known as the
Associativity Equation

fO) (OB f@)=(fx)Df©) D f(2)

where the aim is to find all the possible operators @ that
satisfy the equation above.

We require that the join operations are closed,
That the valuations respect ranking, i.e. x =y = f(x) = f(y)
And that @ is and associative.



Associativity Equation

The general solution to the Associativity Equation

f) & (OB f@)=(fx)Df) D f(2)

is (Aczel 1966; Craigen and Pales 1989; Knuth and Skilling 2012):

F(f(x) ®f) =F(fx)+F(f»)

where F is an arbitrary invertible function.



Regraduation

F(f(x) ®f) =F(fx)+F(f»)

Since the function F is arbitrary and invertible, we can define a

new quantification v(x) = F(f(x)) so that the combination is
always additive.

Thus we can always write

v(xVvy) =vx) +v(y)

In essence, we have derived measure theory from
algebraic symmetries.



Additivity Additivity

XV y

/1I\

X Y

v(xVvy) =vx) +v(y)

Knuth, MaxEnt 2009
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Why We Sum

always results in

1+2=3

because it is guaranteed to always work since
combining crayons in this way is
closed, commutative, associative,
and I can order sets of crayons.
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More General Cases
General Case

XVYy

VRN
\/\

XAY



A More General Case
General Case

XVYy

7\

y

AN I\

XAY

v(y) =v(xAy) +v(z)



More General Cases

General Case

v(y) =v(xAy) +v(z)

v(xVvy) =v(x)+v(z)

4/24/2016 Knuth — SUNY Albany
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More General Cases
General Case

XVYy

VRN
\/\

XAY
v(y) =vlxAy)+v(z) vxVvy) =vx)+v(2)

v(xVvy) =v(x)+v(y)—vxAy)



The Sum Rule

Sum Rule

v(xVy)=vx)+vQy)—vExAy)

/ I\

2 3

\ '/

&

vixVvy)+vxAy) =vx)+v(y)
symmetric form (self-dual)



A Curious Observation

Fundamental symmetries are why the Sum Rule is ubiquitous

Ubiquity (inclusion-exclusion)
Pr(A VB|[C) =Pr(A|C)+Pr(B[C)— Pr(A AB|C) Probability

I1(A;B) =H(A) + HBB) —H(4,B) Mutual Information
Area(A U B) = Area(A) + Area(B) — Area(A N B) Areas of Sets
max(4,B) = A+ B — min(4, B) Polya’s Min-Max Rule
log LCM(A,B) =logA + logB —log GCD(A, B) Integral Divisors

I5(A,B,C) = |AUBLUC| — |AUB| — |AUC| — |BUC| + |A| + |B| + |C| Amplitudes from three-slits

(Sorkin arXiv:\\gr-qc/9401003)

The relations above are constraint equations ensuring consistent
quantification in the face of certain symmetries
(commutativity, Associativity, Closure, and Ranking)

Knuth, 2003. Deriving Laws, arXiv:physics/0403031 [physics.data-an]
Knuth, 2009. Measuring on Lattices, arXiv:0909.3684 [math.GM]

Knuth, 2015. The Deeper Roles of Mathematics in Physical Laws, arXiv:1504.06686 [math.HO]



INFERENCE



What can be said about a system?

states

apple banana cherry

states of the contents of
my grocery basket

4/24/2016 Knuth — SUNY Albany
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What can be said about a system?

crudely describe knowledge by listing a set of potential states

subset
{a b c} inclusion
powerset /I\
v {a,b} {ac} {bc}
a b C {a} {b} {c]
states of the contents of statements

about the contents of

my grocery basket my grocery basket
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What can be said about a system?

{a b, c/
/I\ implies
(e, b} {ac) {bc/ ]

|>Q<\

{b]} {c)

statements
about the contents of
my grocery basket

ordering encodes implication
DEDUCTION



What can be said about a system?

tabcj Quantify to what degree
/I\ the statement that the system is in
{fa,b} {ac} {bc) one of three states {a, b, c/

|>Q<| implies knowing that it is
in some other set of states
{a} (b} {c]

statements
about the contents of
my grocery basket

inference works backwards



Inclusion and the Zeta Function

{a b, c}

T~

ta,b} {ac) ({bcy

|>Q<|

{b]} {c]

The Zeta function encodes
Inclusion (Boolean
implication) on the lattice.

1 if x<vy

c(xy) = {O if x<vy

One can conceive of
probability as a
generalization of the zeta
function (Boolean implicatio)



Quantifying Lattices
Context and Bi-Valuations

BI-VALUATION p:x,lelL = R
Bi-Valuation Valuation

px[)) — Vv;(X) — V(¥

Context i Measure of x Context i
is explicit with respect to is implicit
Context i

Bi-valuations generalize lattice inclusion to
degrees of inclusion



Quantifying Lattices

The logical disjunction (OR), Vv, Is associative,
commutative, and closed.

As a result, the valuations obey the Sum Rule
under constant context, i.

P [ +p(y [1) =p(X vy |[1)+p(XAy][1)




Changing Context
Context

p(b|c)

<€ p(alc) \3
\bg p(alb)
\ )

. € €
p(alc) = p(alb) @ p(b|c)

where the operator @ is to be determined



Associativity of Context
Associativity of Context

444444444



Associativity of Context
Associativity of Context

)
a¥® \)

€

Since @ is associative, commutative, and obeys

closure, it must be an invertible transform of addition.
However, the only degree of freedom left is that of scale
so it must be a product.




Chain Rule

Chain Rule

p(alc) = p(alb)p(blc)

How is the above an invertible transform of addivity?

log(p(alc)) = log(p(alb)) + log(p(blc))



An ldentity

Lemma

P(X[X)+p(y [X) = p(X vy [X)+p(XAY[X)

Since x <xand x < xVy, p(x | x)=1and p(xVy | x) =1

xVy

€

/N

X V)f P(Y | X) =p(XAYy|[X)
./

X/\y
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Extending the Chain Rule

PXAYAZ|X)=PXAY|X) PXAYAZ|XAY)

/\
€ €
VAR
x@ a Y 3 -




Extending the Chain Rule

PXAYAZ]|X) =pXAY[X) PXAYAZ[XAY)

N

€
/ \ Py AZ|X)=p(Y[X) P(Z|x AY)
A \

: T




Extending the Chain Rule

PXAYAZ]|X) =pXAY[X) PXAYAZ[XAY)

NN

€
/ \ pyAZ[X) =p(y[X¥) p(z|xAY)

\/\

z




Extending the Chain Rule

PXAYAZ]|X) =pXAY[|X) PXAYAZ[XAY)

NN N

€
/N0 PYAZIXY=pyI¥) p|xAy)
€ €




The Product Rule

PXAYAZ]|X) =pXAY[|X) PXAYAZ[XAY)

NN N

€
/ \ PYAZ[X) =p(y|X) p(z|xAY)
/ \/ \ Which is the familiar

Product Rule!
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Bayes Theorem and Change of Context

Commutativity of the product
leads to Bayes Theorem...

p(x [y A i) = ply | x A ) 2ELD
o)
p(x |y) = ply | ) RELD
oy [i)

Bayes Theorem involves relating inferences under
a change of context.

4/24/2016 Knuth — SUNY Albany
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Lattice Products
Lattice Products

€

/@\
/\ /\_ /\\//\

=8 o@@@@o'

NS AN\
o/

e

Direct (Cartesian) product of two spaces
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Direct Product Rule
Direct Product Rule

The lattice product is also associative, commutative and closed

Ax(BxC) = (AxB)xC

After the sum rule, the only freedom left is rescaling
p@@blr)) = p(fn) pblJ)

which is again summation (under the invertible transform: logarithm)



Bayesian Probability Theory consists of Constraint Equations

Sum Rule
PXvy[1)=pX|[1)+ply|1)—pXAy])

Direct Product Rule
p(a,bll,]) = paln)pd]])

Product Rule
Py Az|x)=p(y[X)pz|xAy)

Bayes Theorem

p(x11)
p(X[y) =Py [X) ———- D

4/24/2016 Knuth — SUNY Albany



Inference

fa bc} -
/ i \\ Given a quantification of the
join-irreducible elements,
la,b} {ac) {bc/ one uses the constraint
i S S i equations to consistently
[a) [b} [c]} assign any desired
bi-valuations (probability)
statements

This derivation gives meaning to probability
as the degree of implication



4/24/2016

How far can we take
these ideas?

One can derive:
Information Theory

Feynman Path Integral Formulation
of Quantum Mechanics

Special Relativity

Knuth — SUNY Albany
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Describing Systems

Choosing a Piece of Fruit

4/24/2016

apple

Knuth — SUNY Albany

banana

cherry

87



State Space

4/24/2016

a “4.‘ ; .“ o o :/:y ¥
"..,",‘}__’ —— - g

apple banana cherry

States describe Systems
Antichain

Knuth — SUNY Albany
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Potential States given by Powerset

4/24/2016

<

powerset

~

Knuth — SUNY Albany

2N
{a, b, ¢}

{a, b} {a, c} {b, c}

| >
(a} b} {c}

~1

@

89



Potential States

4/24/2016

o

Z|

N ®
b C

powerset

~

Knuth — SUNY Albany
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Statements = Sets of Potential States

N N
N 2
powerset
| . 4
Q " ®
a b C
States Statements

(sets of states)
(potential states)

4/24/2016 Knuth — SUNY Albany 91



Three Spaces

2" FD(N)

Z|

R ¥ ABUACUBC 779
powerset av,h,v/ ¢ PN -
/l\ X  4BUAC ABUBC ACUBC
/\ | ><><| } -
é.vb w bgC/ ” M cuas suac auscd @
SN T

AB AUBUC_AC BC

\ DA
K_/ AUB AUC BUCT Q'
| >X| S
B C

log y
hd

a={a} A={a}
avb={a,b} AB={ab,avb}

4/24/2016 Knuth — SUNY Albany 92



Questions as Sets of Potential Statements

N
N 2 FD(N)
N \Y A‘TC u 4
powerset avdvc ch <>/<

/l\ X  4BUAC ABUBC ACUBC
4 | > s
avb w b¥C/ - M cua susc auscd @

SN

AB AUBUC_AC BC

W~ 4UB 4UC BUC @

/o L B cl Y
a b C g \l/l S
States Statements Questions
(sets of states) (sets of statements)
(potential states) (potential statements)

4/24/2016 Knuth — SUNY Albany 93



State Space

4/24/2016

a “4.‘ ; .“ o o :/:y ¥
"..,",‘}__’ —— - g

apple banana cherry

States describe Systems
Antichain

Knuth — SUNY Albany
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Hypothesis Space (Space of Statements)

avble

/ | \

Statements are sets of Potential States
Boolean Lattice

4/24/2016 Knuth — SUNY Albany
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Inquiry Space (Space of Questions)

il X

w o
ABUACU BC e
\l/

ABUAC ABUBC ACUBC

| > \o/

CUAB BUAC AUBC u /|

T [ SO\

AB AUBUC_AC BC

\ D<A

AUB AUC BUC [ S
| > N
A B C
\l/

1

answers

Questions are sets (downsets) of Statements
Free Distributive Lattice



Questions Can Answer One Another

“Is it an Apple or Cherry, or is it

ABC S &
| W e’ 4 Banana or Cherry?
ABUACUBC e

ABUAC ABUBC ACUBC

| > )

CUAB BUAC AUBCE @ 1 “Isitan Apple?”

Relevance Decreases

%T [ SN
% AB AUBUC AC BC
el \_ DI A
AUB AUC BUC Q%
| > N
A B C
Central Issue
\l/

1 “Is it an Apple, Banana, or Cherry?”

4/24/2016 Knuth — SUNY Albany 97



Central Issue

This question is answered by the following set of statements:

b

I={ a= “Itis an Apple!”,
b = “Itis a Banana!”,
c = “Itis a Cherry!” }

| = {a,b,c}

4/24/2016 Knuth — SUNY Albany
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Questions Can Answer One Another

Now consider the binary question

B = “Is it an Apple or not an Apple?”

B={a = “Itis an Apple!”, ~a = “It is not an Apple!”}

B ={abvcDb,c}

As the defining set is exhaustive, ~a=bwv C



Ordering Questions and Answering

[ = “Is it an Apple, Banana, or Cherry?”

| = {a,Db,c}

B = “Is it an Apple?”

B ={abvcDb,c}

| answers B

| B I

B includes |



Probability and Statements

Probability quantifies the degree to which
one statement implies another

p(x 1)

y Constraint Equations
p(xvy[1)=p(x[1)+p(y[1)—p(xAy][l)
p(xAy[1)=p(x][1) p(y[XxAl)

p(x| ) p(y [ X At)
p(y|[t)

p(x|yat)=

4/24/2016 Knuth — SUNY Albany 101



Relevance and Questions

Relevance quantifies the degree to which
one guestion answers another

i . d(X |Y)
ABUACUBC /:><b7
~1

ABUAC ABUBC ACUBC

| > ‘e Constraint Equations

CUAB BUAC AUBC< ) |

[ SO N d(XvY [2)=d(X | Z2)+d(Y | Z)—d(X AY |Z)

AB AUBUC_AC BC

\ DA d(X Z)=d(X|Y)d(Y|2Z)
AUB AUC BUC Qﬂ_w_/'g
> N
A B C
\I/
1

4/24/2016 Knuth — SUNY Albany 102



Probability and Relevance

ABC o

| R
ABUAC U BC e
Nl/

ABUAC ABUBC ACUBC

— | > N
CUAB BUAC AUBC .
Relevance is / \l><\ \’/

AB AUBUC_AC BC

afunction__ \ /]></

of probability  4us 4uc BUCT @
I >X| N
A B C
\l/
1

FURTHER ASSERT that the degree to which one question answers another
must depend on the probabilities of the possible answers.

4/24/2016 Knuth — SUNY Albany 103



Partition Questions

ABC
| o g One can show that relevance is only
48U 4C UBC 4 a valid measure on the sublattice of
AB U AC ABUBC ACUBC = questions isomorphic to partitions
| >
CUAB BUAC AUBC
5. ABC

[ SN PN

AB AUBUC_AC BC

\ D<A C|AB  BJAC A|BC
AUB AUC BUC
> N S
A B C

: A|B|C
\l/

1
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Relevance and Entropy

y ..:—\’_
A1|3C o
ABUACU BC e
\Jl-/

ABUAC ABUBC ACUBC

| > Ny

CUAB BUAC AUBC

[ SO\ e

AB AUBUC_AC BC

\ D<A

AUB AUC BUCT ()

_—y

d(1Q)

aH (Q) +b

-a » p;log, p,+b
=1

| > N
A B C
\l/ A theorem by Aczel and Ng further constrains the relevance,

such that the degree to which a partition question answers

the central issue is proportional to the Shannon entropy

of the partition questions top answers.



Relevance and Entropy
One can normalize with respect to H(l)

d(11Q) i

ABUACU BC e

ABUAC ABUBC ACUBC

| >
CUAB BUAC AUBC b/|
/\D<\ L T H(pa’pbvc)

AB AUBUC_AC BC

\ D<A

AUB AUC BUC

| > ~
A B C

e
o pa Iogz pa \l/

1

H(l)= —-p,log, p, — p, l0g, p, — P, l0g, P,
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Higher Order Informations

d(ACUBC|1) = d(BUAC|1)+d(AUBC|1)-d((BUAC)A(AUBC)|I)

[ d(]ACUBC) ~ I(BUAC; AUBC)

ABC
| ave bve
ABUACU BC e
hd This relevance is related to the mutual
ABU AC ABUBC ACU BC frmation
| > |
CUAB BUAC AUBC A

/ \D<\ hd In this way one can obtain

AB AUBUC_AC BC

\ /[></ higher-order informations.

AUB 4UC BUC ., .  However, often these are invalid as they may
| >3 S involve non-partition questions.
A B C
1
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Guessing Game

Q.

apple banana cherry

Can only ask binary (YES or NO) questions!
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Which Question to Ask?

Is It or Is It not an Apple?
Is It or Is It not a Banana?
Is it or is it not a Cherry?

If you believe that there is a

75% chance that it is an Apple,

and a 10% chance that it Is a Banana,
which question do you ask?
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Relevance Depends on Probability

Is it an Apple? Is It a Banana? :
oo JranAappies o lsitabananas s itaCherry?
90 90 = A' 90 A =
80 80 80
70 70 70 :
B0 B0
a;SU asu
40 40
30 30
0 0 e e
10 10 10
DD DU 10 20 30 40 6 B0 70 80 90 DU 10 20 30 40 B B0 70 80 90 1[:]D

If you believe that there is a

75% chance that it is an Apple,

and a 10% chance that it is a Banana,
which question do you ask?
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Relevance Depends on Probability

. dsitanApple? —  IsitaBanana?  _ |sitaCherry?

90 = A ' 90 A =
80 e 80 e
70 | 70 | 5
&0 &0
asu asu
40 40
30 30
2 Pal T
10 10
oo % ®w 2 x Eﬂ) B0 70 81 90 % w 2 x B B 70 & w0 10

d(I|AUBC) < 05623  d(I|BUAC)«0.3250 d(I|CuU AB)cc0.4227

If you believe that there is a

75% chance that it is an Apple,

and a 10% chance that it is a Banana,
which question do you ask?
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Earth Science Research Team

William B. Rossow
City College of New York
(formerly NASA GISS)

Kevin H. Knuth, PT Deniz Gengaga
Univ at Albany (SUNY) Carnegie Mellon Univ

FUNDING: NASAESTO
Advanced Information Systems Technology, Knuth (PI)
Cloud Modeling and Analysis Initiative, Rossow (Pl), Knuth (co-I)
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Lorenz System

x=o(y-x)
Yy=—XZ+IX—-Y
2 =Xy —Dbz
o =10
‘ b=8/3

r = Rayleigh Number

20
www-rohan.sdsu.edu v
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Lorenz System

How do these variable influence one another? X = a(y — x)
NOT OBVIOUS! V= —XZ+IX—Yy

2 =Xy —Dbz

o =10
b=8/3
r = Rayleigh Number

www-rohan.sdsu.edu ) o
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Correlation Coefficient Examples

Joint Distributions of Two Variables X and Y

1.0 0.8 | 0.4 0.0 -04 -1.0
-1.0 —-1.0
N \\.x

http://en.wikipedia.org/wiki/File:Correlation_examples.png
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Decorrelation does not mean Independent

3, 5 1 ;

ne . (;-)j .

> - #\ 5 % d

A g

s {3@%
g ¥y %

DE-CORRELATED 74 INDEPENDENT
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Entropy

We use X to denote the state of the system out of a set of possible states X
The surprise is large for improbable states and small for probable states.

1
h(x) = log——
(x) = log o(%)

Averaging this quantity over all of the possible states of the system gives a
measure of our knowledge about the state of the system

H(X) = S p(x) log—— = — 3 p(x) log p(x)

xeX X) xeX

which is called the entropy.



Mutual Information

An important quantity is given by the sum and difference of entropies,

MI(X,Y) = HX)+HY)=H(X,Y)

This is called the Mutual Information (MI) since it describes the amount of
information that is shared between the two subsystems.

MI(X.Y) = V) log _PY)
(XY = 2,2 pley)log ey

Mutual Information is zero if X and Y are statistically independent.
However, it is never zero in practice when computed from data.

Need to quantify uncertainties!



Transfer Entropy

Schreiber (2000) introduced an information-theoretic quantity called the
Transfer Entropy (TE). Consider two subsystems X and Y, with data in the
form of a two time series of measurements

X :{X1’ Xo0 vy Xey Xigy =" Xn}
Y ={y1, Yor=o Yoo Yeurr oo yn}

then the transfer entropy can be written as

T(Xt+1 | Xt’Ys) = —H (Xt) +H (Xt’Ys) +H (Xt’ Xt+1) —H (Xt’ Xt+1’Ys)

which describes the degree to which information about Y allows one to
predict future values of X. This is a potential measure of the causal influence
that the subsystem Y has on the subsystem X.



Estimating Information-Theoretic Quantities

The concepts behind the procedure are straightforward:

1. Estimate the probability density from which the data were sampled.
2. Using this probability density, estimate the various necessary entropies.

Challenges

First, difficult to perform objectively since probability density models often
have free parameters that must be assigned.

Second, we interested in the values of these quantities, but we are also
Interested in the associated uncertainties of our estimates.

Third, Even worse, the entropy of the most probable density model does
not correspond to the most probable entropy!
(Jacobians come in to play)
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Estimating Information-Theoretic Quantities

Challenges

First, difficult to perform objectively since probability density models often
have free parameters that must be assigned.
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Histograms as Probability Density Models

3000

1500 -

1000

500

Histograms can be viewed as simple models of the probability
density from which the data were sampled.

They are convenient since they have regions of constant
probability.



Histograms

N = 10000, M = 10000 N = 10000, M = 1000 N =10000, M =100

N =10000,M=47  _ N=10000, M =23 N '=10000, M = 10

The histogram should contain only details warranted by the data.
But how do we choose the Number of Bins?
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Bayesian Posterior for the Number of Bins

By integrating over all possible bin probabilities, we can derive the posterior
probability of the number of bins given the data.

) T
p(M |d, 1) o [\I\fj r((lzjg ;(nlgnbl:%
2

It is easier to find the number of bins that maximizes the logarithm of
the posterior probability

log p(M |d,l) =

M
NlogM + IogF(Mj - M Iogl“(lj - IogF(N +Mj + Zlogl“(nkwtlj + K
2 2 2 ) & 2

where K is the implicit proportionality constant.



optBins Algorithm

Now featured in Mathematica as the Knuth Method

function optM = optBINS (data,minM,maxM)

if size(data)>2 | size(data,l)>1
error ('data dimensions must be (1,N)");
end
N = size(data,?2);

o)

% Loop through the different numbers of bins

o)

% and compute the posterior probability for each.

logp = zeros (l,maxM);
for M = minM:maxM
n = hist(data,M); % Bin the data (equal width bins here)
p =0y
for k = 1:M
p = p + gammaln(n(k)+0.5);
end
logp (M) = N*log (M) + gammaln(M/2) - M*gammaln (1/2) - gammaln (N+M/2) + p;
end
[maximum, optM] = max(logp):;
return
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“Optimal” Histograms

0.4}

0.3}

0.2r

0.1

Probability Density

4/24/2016
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“Optimal” Binning for N = 3000 Gaussian distributed data points: M = 14
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The “Optimal” Histogram

N = 10000, M = 10000 N = 10000, M = 1000 N =10000, M =100

N =10000,M=47 | _ N=10000, M =23 N '=10000, M = 10

The histogram should contain only details warranted by the data.
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Entropy Estimation

Entropy estimation is relatively easy with a constant-piecewise model
H=-> plogp,
[

H = -sum(p .* (log(p) - log(vol)));

N =10000, M = 23

4/24/2016 Knuth — SUNY Albany 130



Entropy Estimation

And also in higher-dimensions...

H(X,Y) = => > p(xy)log p(x,Y)

Xxe XyeY
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Estimating Uncertainties

To calculate the uncertainties in the entropy estimates, one must first realize

that we are uncertain as to the bin probabilities of the probability density
model.

By sampling a set of bin probabilities, we obtain a set of probable density
functions, along with a set offrobable entropies.

M
MO I 9 1 1
p(m, M |d,I) o (Vj AR A I A

From this set of probable .
entropies, we can compute -
the mean and variance. Thus
guantifying both the entropy
and our uncertainty.




Estimating Information-Theoretic Quantities

Challenges

Second, we interested in the values of these quantities, but we are also
Interested in the associated uncertainties of our estimates.
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Estimating Entropy from Data

_
\— / N Y
N ~
Bayesian inference Sample multiple pdf’s from the
posterior probability distribution
of pdfs
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Estimating Information-Theoretic Quantities

Challenges

Third, Even worse, the entropy of the most probable density model does
not correspond to the most probable entropy!
(Jacobians come in to play)
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Entropies from Sampling

This shows some of the results from sampling from the posterior probability
and computing the entropies.

The data was from a Gaussian distribution with u =0, o = 1.
The true entropy is H;, . = 1.419

N =10000, M =24

50000 Samples

H= 1.4202
1.4161
1.4159

1.4211
1.4259
1.4290

3500

H

3000

2500

N
(=]
(=)
(=

Number of Samples
I
s

-
(=
L=
<

500

est —

=1.423 + 0.007

Note the unavoidable bias

0
1.39 1.4 1.41 1.42 1.43 1.44
Entropy Estimate

L 1
1.45 1.46 1.47



Estimating Mutual Information

Mutual information requires the estimation of BOTH the two one-dimensional
marginal entropies and two-dimensional joint entropy. We can use the same
sampling strategy for all cases.

MI(XY) = HOO+HE) - HXY)

B L SE B

H(X)




Cloud Cover and Seasonality

Mutual Information between ISCCP percent cloud cover and Seasonality.

-
=
=

The data consisted of monthly averages of percent cloud cover resulting in a time-series
of 198 months of 6596 equal-area pixels each with side length of 280 km.

This method finds the Inter-Tropical Convection Zones, The Monsoon Regions, the Sea
Ice off Antarctica, and cloud cover in the North Atlantic and Pacific.
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Transfer Entropy Results

Lorenz system r=24 (sub-chaotic regime)

0.77098| 0.7598 0.8136

0.8616

OptBINS Histogram Method B=0.1
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Transfer Entropy Results

Lorenz system r=24 (sub-chaotic regime)

0.4128 0.8447
Kernel Density Estimation Adaptive Partitioning
(Prichard and Theiler, Grassherger & Procaccia) (Fraser & Swinney, Darbellay & Vajda)
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0.8616

OptBINS Histogram Method
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Transfer Entropy Results

Lorenz system r=28 (chaotic regime) o

-20

-30 .
25

0.4923 0.6929 -0.3476

Kernel Density Estimation Adaptive Partitioning OptBINS Histogram Method
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Transfer Entropy Results Gencaga, Knuth, Rossow
Entropy 2015, 17(1), 438-470

Lorenz system models a two-dimensional convection roll uniformly heated
from below and uniformly cooled from above.

| | x=o(y-x)
X: convective velocity ,
y: vertical temperature difference y=—X+IX-Yy
z: mean convective heat flow 72 =Xy —Dbz

convective
velocity

vertical mean convective
temperature difference * heat flow



Thank You!



