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Familiarity breeds the illusion of understanding 

      Anonymous 
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George Boole (1815 – 1874) 

George Boole was the inventor of 

Boolean Logic.   

 

In 1854 he published: 

 

“An Investigation of the Laws of 

Thought, on Which are Founded the 

Mathematical Theories of Logic and 

Probabilities” 

Since that time, HUNDREDS OF THOUSANDS of papers 

have been published on this topic. 

George Boole and Boolean Logic 
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Claude Shannon (1916 – 2001) 

In what is perhaps the most important 

Masters Thesis of the 20th Century, 

 

Claude Shannon realized that Boolean 

logic could be used to optimize arrays of 

electromagnetic relays used in switching 

telephone systems. 

With this insight that switches could emulate Boolean logic 

operations, we entered the Computer Age! 

Claude Shannon and Information Theory 
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Claude Shannon (1916 – 2001) 

Years later at AT&T Bell Labs,  

Claude Shannon derived a logically 

consistent way of quantifying the 

amount of information that could be 

transferred in a communication channel 

This resulted in the Shannon Entropy and Information Theory! 

Claude Shannon and Information Theory 
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Edwin T. Jaynes  

(1922 – 1998) 

The extension of Boolean logic to Bayesian Probability Theory 

extends the deductive logic of a traditional computer to inferential 

reasoning, which is capable of handling uncertainty. 

Rev. Thomas Bayes  

(1702 – 1761) 

Richard T. Cox  

(1898 – 1991) 

Inferential Reasoning 
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Expectation and Surprise! 
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When Henry was born, he had no 

information about the world. 

All things were essentially equally 

probable. 

He was equally surprised by 

everything. 

p(x) 

x 

All states equally probable. 

Expectation and Surprise 
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Henry now has some idea that 

some events are more probable than 

others. 

He is now sometimes surprised! 

p(x) 

x 

Some states are common and 

others rarely occur! 

Expectation and Surprise 
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We use x to denote a particular state of the system out of a set of possible 
states X 

 

The surprise is large for improbable states and small for probable states.   

 

 

 

 

)(

1
log)(

xp
xh 

Surprise 

11 



4/24/2016 Knuth – SUNY Albany 

The surprise is large for improbable states and small for probable states.   

 

 

 

 

 

Averaging the surprise over all of the possible states of the system gives a 
measure of our uncertainty about the states of a system:  

 

 

 

 

which is called the Shannon entropy. 
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If the system states can be described with multiple parameters, the entropy is 
computed by averaging over all possible states  

 

 

 

This is called the Joint Entropy, since it describes the entropy of the states of X 
and Y, which jointly describe the system.  You can think of X and Y as 
representing subsystems of the original system XY. 
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X  Y 
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H(X,Y) 

Joint Entropy 
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One can consider a joint system which is composed from joining two systems.  
In this case, an important quantity is the difference of entropies, 

 

 

 

This is called the Mutual Information (MI) since it describes the amount of 
information that is shared between the two subsystems.  

),()()(),( YXHYHXHYXMI 

X Y 
H(X) H(Y) 

MI(X,Y) 

Mutual Information 
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The Laws of Nature 
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From Where do the Laws of Nature Originate? 

Paradigm Shift 



Laws are fundamental and are dictated by God or Mother 

Nature or Historical Accident 
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From Where do the Laws of Nature Originate? 

Paradigm Shift 

It is widely believed that the Laws of Nature reflect 

underlying order in the universe 



Laws are fundamental and are dictated by God or Mother 

Nature or Historical Accident 
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From Where do the Laws of Nature Originate? 

Paradigm Shift 

Laws are based on fundamental symmetries 

Laws reflect the optimal means by which one can process 

information about the universe 



Dictated   implies they must be discovered  
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From Where do the Laws of Nature Originate? 

Paradigm Shift 

Symmetries   laws are relations enforcing symmetries 

Optimal Information Processing  probability and entropy 



Dictated   implies they must be discovered  
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From Where do the Laws of Nature Originate? 

Paradigm Shift 

Symmetries   laws are relations enforcing symmetries 

Optimal Information Processing  probability and entropy 

These latter two paradigms imply that Laws might be derived! 
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Information Physics 

Symmetries Optimal Information Processing 

Consistent Quantification Physics as Inference 

Cox, Jaynes, Knuth and Skilling 

Quantification of Statements 

 

Knuth 

Quantification of Questions 

 

Goyal, Knuth, Skilling 

Quantum Mechanics  

(Quantified Measurement Sequences) 

 

Knuth, Bahreyni and Walsh 

Special Relativity 

Spacetime Physics 

Relativistic Quantum Mechanics 

Jaynes 

Statistical Mechanics as Inference 

Maximum Entropy 

 

Caticha, Johnson, Cafaro, Nawaz, 

Abedi, Ipek, Bartolomeo, etc. 

Entropic Dynamics 

 

Dewar, Lorenz, Martyushev, Wang, etc 

Maximum Entropy Production 
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Edwin T. Jaynes  

(1922 – 1998) 

Shortly after Shannon’s work on 

Information Theory, Ed Jaynes realized 

that the Shannon Entropy was the same 

quantity as the entropy in statistical 

mechanics.  This led to the development 

of: 

The Principle of Maximum Entropy 

Maximum Entropy 

23 

where one assigns probabilities that maximize the 

entropy subject to any known constraints.  In this sense 

statistical mechanics is a theory of inference. 
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Edwin T. Jaynes  

(1922 – 1998) 

The idea behind 

The Principle of Maximum Entropy 

is to assign probabilities that are 

consistent with what is known, but are 

maximally ignorant otherwise (thereby 

not accidentally assuming something 

inappropriate) 

Maximum Entropy 
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Maximum entropy production is a similar concept 

applied to dynamical systems. 

Maximum Entropy Production 

25 

To paraphrase an  

analogy made by  

Brendon Brewer: 

 

If it is true that many ways lead to the summit, then if you 

are on a path, you will very likely find your way to the 

summit! 
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Information Theory 

It was a matter of great debate from the 

1950s through the 2000s as to whether 

Information Theory was applicable to a 

wider array of problems than the 

communication channels for which it was 

developed. 

 

Shannon weighed in on this debate 

stating that he did not believe that 

Information Theory was applicable 

outside of communication channels. 

 



Fundamental Questions 
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1 + 2 = 3 

In graduate school I asked: 

Why when I combine one crayon with two 
crayons 

 

 

 

 

do I always get three crayons 
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= 



= 

1 + 2 = 3 
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1 + 2 = 3 
4/24/2016 Knuth – SUNY Albany 30 

= 



A B = A B 

𝑣 𝐴 ∪ 𝐵 = 𝑣 𝐴 + 𝑣(𝐵) 
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= 

𝑣 𝐴 ∪ 𝐵 = 𝑣 𝐴 + 𝑣 𝐵 − 𝑣(𝐴 ∩ 𝐵) 

volume 
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A B A B 

Knuth, MaxEnt 2003 



𝑠 𝐴 ∪ 𝐵 = 𝑠 𝐴 + 𝑠 𝐵 − 𝑠(𝐴 ∩ 𝐵) 

= A B 

surface area 
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A B 

Knuth, MaxEnt 2003 



sum rule of probability 

I)|BPr(AI)|Pr(BI)|Pr(A)|Pr(A  IB
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Knuth, MaxEnt 2003 



𝐼(𝐴; 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 

mutual information 
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Knuth, MaxEnt 2003 



𝑚𝑎𝑥 𝑎, 𝑏 = 𝑎 + 𝑏 −𝑚𝑖𝑛(𝑎, 𝑏) 

polya’s min-max rule 
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Knuth, MaxEnt 2003 



log 𝐿𝐶𝑀(𝑎, 𝑏)
= log 𝑎 + log 𝑏 − log(𝐺𝐶𝐷(𝑎, 𝑏)) 

number theory identity 
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Knuth, MaxEnt 2009 



1 + 2 = 3 

Clearly, my original question at to why 

 

 

 

 

 

results in 
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= 



Is related to many problems, but specifically this one: 

 

why the probability of the disjunction of two 
statements A and B given I results in 
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I)|BPr(AI)|Pr(BI)|Pr(A)|Pr(A  IB



the essential content of both statistical 
mechanics and communication theory, of 
course, does not lie in the equations; it lies in 
the ideas that lead to those equations  
      E. T. Jaynes 
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the essential content of both statistical 
mechanics and communication theory, of 
course, does not lie in the equations; it lies in 
the ideas that lead to those equations  
      E. T. Jaynes 
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the essential content of both statistical 
mechanics and communication theory, of 
course, does not lie in the equations; it lies in 
the ideas that lead to those equations  
      E. T. Jaynes 
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A MODERN PERSPECTIVE 



Measure what is measurable, 

and make measurable that which is not so. 

      Galileo Galilei 
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Lattices 

Lattices are partially ordered sets where each pair of 

elements has a least upper bound and a greatest lower 

bound  
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aba

bba
ba






Structural 

Viewpoint 

Operational 

Viewpoint 

Lattices are Algebras 

Lattices 
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aba

bba
ba






Structural 

Viewpoint 

Operational 

Viewpoint 

aba

bba
ba






Assertions, 

Implies 

aba

bba
ba






Sets, Is a subset 

of 

aba

bba
ba






),gcd(

),lcm(
|

Positive Integers, 

Divides 

aba

bba
ba






),min(

),max(

Integers, Is less than or 

equal to 

Lattices 



quantify the partial order  ≡ assign real numbers to the elements 

Require that quantification be consistent with the structure. 

Otherwise, information about the partial order is lost. 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 
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𝑓: 𝑥 ∈ 𝐿 →  ℝ 

Quantification 



Enforce local consistency 

𝑥 𝑦 

Any general rule must hold for special cases 
Look at special cases to constrain general rule 

where ⊕ is an unknown operator 
to be determined. 
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𝑥 ∨  𝑦 

𝑓: 𝑥 ∈ 𝐿 →  ℝ 

𝑓 𝑥 ∨ 𝑦 = 𝑓 𝑥  ⊕   𝑓 𝑦  

Local Consistency 



Write the same element two different ways 

which implies 

Note that the unknown operator ⨁ is nested in  
two distinct ways, which reflects associativity 
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Associativity of Join 

𝑥 ∨ 𝑦 ∨ 𝑧 = 𝑥 ∨ 𝑦 ∨ 𝑧 

𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  
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Associativity Equation 

where the aim is to find all the possible operators ⊕ that  
satisfy the equation above. 

We require that the join operations are closed, 
That the valuations respect ranking, i.e. 𝑥 ≥ 𝑦 ⇒ 𝑓 𝑥 ≥ 𝑓 𝑦  
And that ⊕ is commutative and associative. 

𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  

This is a functional equation known as the  
Associativity Equation 



The general solution to the Associativity Equation 

where 𝐹 is an arbitrary invertible function. 
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𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  

Associativity Equation 

is (Aczel 1966; Craigen and Pales 1989; Knuth and Skilling 2012): 

𝐹 𝑓 𝑥  ⊕ 𝑓 𝑦 = 𝐹 𝑓 𝑥 + 𝐹 𝑓 𝑦  
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Regraduation 

Since the function 𝐹 is arbitrary and invertible, we can define a 

new quantification 𝑣 𝑥 = 𝐹 𝑓 𝑥  so that the combination is 

always additive. 
 
Thus we can always write 

𝐹 𝑓 𝑥  ⊕ 𝑓 𝑦 = 𝐹 𝑓 𝑥 + 𝐹 𝑓 𝑦  

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  

In essence, we have derived measure theory from  
algebraic symmetries. 



Additivity 

4/24/2016 Knuth – SUNY Albany 54 

𝑥 𝑦 

Knuth, MaxEnt 2009 

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  

𝑥 ∨  𝑦 

Additivity 



Epiphany! 
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1 + 2 = 3 
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+ = 
always results in 

because it is guaranteed to always work since  
combining crayons in this way is  
closed, commutative, associative,  

and I can order sets of crayons. 

Why We Sum 



𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

More General Cases 

General Case 
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General Case 
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A More General Case 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  



General Case 
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More General Cases 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑧  



General Case 
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More General Cases 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑧  

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦 − 𝑣 𝑥 ∧ 𝑦  



symmetric form (self-dual) 

Sum Rule 
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The Sum Rule 

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦 − 𝑣 𝑥 ∧ 𝑦  

𝑣 𝑥 ∨ 𝑦 + 𝑣 𝑥 ∧ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  
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A Curious Observation 

Fundamental symmetries are why the Sum Rule is ubiquitous 

Pr 𝐴 ∨ 𝐵 𝐶) = Pr 𝐴 𝐶) + Pr 𝐵 𝐶) − Pr 𝐴 ∧ 𝐵 𝐶) Probability 
𝐼 𝐴; 𝐵 = 𝐻 𝐴 + 𝐻 𝐵 − 𝐻 𝐴, 𝐵  Mutual Information 
𝐴𝑟𝑒𝑎 𝐴 ∪ 𝐵 = 𝐴𝑟𝑒𝑎 𝐴 + 𝐴𝑟𝑒𝑎 𝐵  − 𝐴𝑟𝑒𝑎 𝐴 ∩ 𝐵  Areas of Sets 
max 𝐴, 𝐵 = 𝐴 + 𝐵 −min 𝐴, 𝐵  Polya’s Min-Max Rule 
log 𝐿𝐶𝑀 𝐴, 𝐵 = log𝐴 + log𝐵 − log𝐺𝐶𝐷 𝐴, 𝐵  Integral Divisors 

Ubiquity (inclusion-exclusion) 

𝐼3 𝐴, 𝐵, 𝐶 = 𝐴⨆𝐵⨆𝐶 − 𝐴⨆𝐵 − 𝐴⨆𝐶 − 𝐵⨆𝐶 + 𝐴 + 𝐵 + |𝐶| Amplitudes from three-slits 

(Sorkin arXiv:\\gr-qc/9401003) 

The relations above are constraint equations ensuring consistent 

quantification in the face of certain symmetries 

(commutativity, Associativity, Closure, and Ranking) 

 
Knuth, 2003. Deriving Laws, arXiv:physics/0403031 [physics.data-an] 

Knuth, 2009. Measuring on Lattices, arXiv:0909.3684 [math.GM] 

Knuth, 2015. The Deeper Roles of Mathematics in Physical Laws, arXiv:1504.06686 [math.HO] 
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INFERENCE 



apple banana cherry 

states of the contents of  
my grocery basket 

What can be said about a system? 

states 
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crudely describe knowledge by listing a set of potential states 

powerset 

states of the contents of  
my grocery basket 

statements  
about the contents of  

my grocery basket 

subset 
inclusion 

a          b         c 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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ordering encodes implication 
DEDUCTION 

statements  
about the contents of  

my grocery basket 

implies 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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statements  
about the contents of  

my grocery basket 

inference works backwards 

Quantify to what degree  
the statement that the system is in 

one of three states {a, b, c} 
implies knowing that it is  
in some other set of states 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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








yxif

yxif
yx

0

1
),(

The Zeta function encodes 

inclusion (Boolean 

implication) on the lattice. 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

Inclusion and the Zeta Function 

One can conceive of 

probability as a 

generalization of the zeta 

function (Boolean implicatio) 



Valuation Bi-Valuation 

v(x)
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i)|p(x (x)vi

Measure of x 
with respect to  

Context i 

Context i 
is implicit 

Context i 
is explicit 

Bi-valuations generalize lattice inclusion to  
degrees of inclusion 

BI-VALUATION RLix,:p 

Quantifying Lattices 

Context and Bi-Valuations 



i)|yp(xi)|yp(xi)|p(yi)|p(x 

The logical disjunction (OR), ∨, is associative, 

commutative, and closed. 

 

As a result, the valuations obey the Sum Rule 

under constant context, i. 

Quantifying Lattices 
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a 

c 

b 

Context 

Changing Context 
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𝑝 𝑎|𝑐  

𝑝 𝑏|𝑐  

𝑝 𝑎|𝑏  

a 

b 

c 

𝑝 𝑎|𝑐 = 𝑝 𝑎 𝑏 ⊗ 𝑝(𝑏|𝑐) 

where the operator ⨂ is to be determined 



= 

Associativity of Context 

Associativity of Context 
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= 

Associativity of Context 

Associativity of Context 

4/24/2016 Knuth – SUNY Albany 73 

c c 

b b 

a a 

Since ⊗ is associative, commutative, and obeys  
closure, it must be an invertible transform of addition. 
However, the only degree of freedom left is that of scale 
so it must be a product. 



c 

b 

Chain Rule 

Chain Rule 

4/24/2016 Knuth – SUNY Albany 74 

a 

𝑝 𝑎|𝑐 = 𝑝 𝑎 𝑏 𝑝 𝑏 𝑐  

log 𝑝 𝑎|𝑐 = log 𝑝 𝑎 𝑏 + log (𝑝 𝑏 𝑐 ) 

How is the above an invertible transform of addivity? 



x)|yp(xx)|yp(xx)|p(yx)|p(x 

Since x ≤ x and x  ≤  x˅y, p(x | x) = 1 and p(x˅y | x) = 1  

x)|yp(xx)|p(y x y 

x ˄ y 

x ˅ y 

Lemma 

An Identity 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 
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y)x|p(zx)|p(yx)|zp(y 

y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 
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y)x|zyp(xx)|yp(xx)|zyp(x 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 
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y)x|p(zx)|p(yx)|zp(y 

y)x|zyp(xx)|yp(xx)|zyp(x 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y)x|p(zx)|p(yx)|zp(y 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

The Product Rule 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y)x|p(zx)|p(yx)|zp(y 

Which is the familiar  

Product Rule! 



Commutativity of the product 
leads to Bayes Theorem… 

Bayes Theorem involves relating inferences under 
a change of context. 

i)|p(y

i)|p(x
i)x|p(yi)y|p(x 
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i)|p(y

i)|p(x
x)|p(yy)|p(x 

Bayes Theorem and Change of Context 



x = 

Direct (Cartesian) product of two spaces 

Lattice Products 

Lattice Products 
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The lattice product is also associative, commutative and closed 

CB)(AC)(BA 
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After the sum rule, the only freedom left is rescaling 

which is again summation (under the invertible transform: logarithm)  

Direct Product Rule 

Direct Product Rule 

j)|p(bi)|p(aj)i,|bp(a, 



i)|yp(xi)|p(yi)|p(xi)|yp(x 

Sum Rule 

y)x|p(zx)|p(yx)|zp(y 

Product Rule 

i)|p(y

i)|p(x
x)|p(yy)|p(x 

Bayes Theorem 

j)|p(bi)|p(aj)i,|bp(a, 

Direct Product Rule 
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Bayesian Probability Theory consists of Constraint Equations 



statements  

Given a quantification of the 
join-irreducible elements, 

one uses the constraint 
equations to consistently 

assign any desired  
bi-valuations (probability) 
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{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

Inference 

This derivation gives meaning to probability  
as the degree of implication 



How far can we take 
these ideas? 
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One can derive: 

Information Theory 

Feynman Path Integral Formulation  
of Quantum Mechanics 

Special Relativity 
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a b c 

Choosing a Piece of Fruit apple banana cherry 

Describing Systems 

87 
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States describe Systems 

Antichain 

apple banana cherry 

State Space 

88 
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N2

a        b        c 

N

powerset 

Potential States given by Powerset 

89 
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N2

}a{a

}ba,{ ba

 

a b c

ba ca cb

cba 
powerset 

a        b        c 

N

Potential States 
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N2

States Statements 

(sets of states) 

(potential states) 

a b c

ba ca cb

cba 

a        b        c 

N

powerset 

Statements = Sets of Potential States 

91 
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N2 )(NFD

exp 

log 

}a{a

}ba,{ ba

}{aA 
}ab,a,{ bAB 

a b c

ba ca cb

cba 
powerset 

a        b        c 

N

Three Spaces 
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N2 )(NFD

exp 

log 

States Questions 

(sets of statements) 

 (potential statements) 

Statements 

(sets of states) 

(potential states) 

a b c

ba ca cb

cba 

a        b        c 

N

powerset 

Questions as Sets of Potential Statements 
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States describe Systems 

Antichain 

apple banana cherry 

State Space 
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Statements are sets of Potential States 

Boolean Lattice 

im
p
lie

s
 

a b c

ba ca cb

cba 

Hypothesis Space (Space of Statements) 
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Questions are sets (downsets) of Statements 

Free Distributive Lattice 

a
n
s
w

e
rs

 

Inquiry Space (Space of Questions) 
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a
n
s
w

e
rs

 

Central Issue 

“Is it an Apple, Banana, or Cherry?” 

“Is it an Apple?” 

“Is it an Apple or Cherry, or is it 

 a Banana or Cherry?” 

R
el

ev
a

n
ce

 D
ec

re
a
se

s 

Questions Can Answer One Another 

97 
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I = “Is it an Apple, Banana, or Cherry?” 

This question is answered by the following set of statements:  

I = {   a = “It is an Apple!”,  

          b =  “It is a Banana!”, 

          c = “It is a Cherry!”  } 

},,{ cbaI 

Central Issue 

98 
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Now consider the binary question 

B = “Is it an Apple or not an Apple?” 

B = {a = “It is an Apple!”, ~a = “It is not an Apple!”} 

As the defining set is exhaustive, cba ~

},,,{ cbcbaB 

Questions Can Answer One Another 

99 



4/24/2016 Knuth – SUNY Albany 

B = “Is it an Apple?” 

I = “Is it an Apple, Banana, or Cherry?” 

BI 
I answers B 

 

B includes I 

},,{ cbaI 

},,,{ cbcbaB 

Ordering Questions and Answering 
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a b c

ba ca cb

cba 

)|( ixp

)|()|()|()|( iyxpiypixpiyxp 

)|()|()|( ixypixpiyxp 

)|(

)|()|(
)|(

typ

txyptxp
tyxp




Constraint Equations 

Probability and Statements 

Probability quantifies the degree to which 

one statement implies another 
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)|( YXd

Relevance quantifies the degree to which 

one question answers another 

)|()|()|()|( ZYXdZYdZXdZYXd 

)|()|()|( ZYdYXdZXd 

Constraint Equations 

Relevance and Questions 
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a b c

ba ca cb

cba 

FURTHER ASSERT that the degree to which one question answers another 

must depend on the probabilities of the possible answers. 

Relevance is  

a function  

of probability 

Probability and Relevance 
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One can show that relevance is only  

a valid measure on the sublattice of  

questions isomorphic to partitions 

ABC 

C|AB B|AC A|BC 

A|B|C 

Partition Questions 

104 
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bppa

bQaHQId

n

i

ii 




1

2log

)()|(

Relevance and Entropy 

A theorem by Aczel and Ng further constrains the relevance,  

such that the degree to which a partition question answers 

the central issue is proportional to the Shannon entropy  

of the partition questions top answers. 
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)|( QId

ccbbaa ppppppIH 222 logloglog)( 

),( cba ppH 

aa pp 2log

Relevance and Entropy 

106 

One can normalize with respect to H(I) 



4/24/2016 Knuth – SUNY Albany 

)|)()(()|()|()|( IBCAACBdIBCAdIACBdIBCACd 

);(~)|( BCAACBIBCACId 

This relevance is related to the mutual 

information. 

 

In this way one can obtain  

higher-order informations. 

However, often these are invalid as they may 

involve non-partition questions. 

Higher Order Informations 
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EXAMPLE 

108 



4/24/2016 Knuth – SUNY Albany 

Guessing Game 

apple banana cherry 

Can only ask binary (YES or NO) questions! 
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Which Question to Ask? 
AVM VAM 

AVAM AVVM 

If you believe that there is a  

75% chance that it is an Apple,  

and a 10% chance that it is a Banana, 

which question do you ask? 

Is it or is it not an Apple? 

Is it or is it not a Banana? 

Is it or is it not a Cherry? 

110 
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a a a 

b b b 

c c c 

ABC BAC CAB 

AVAM AVVM 

Is it an Apple? Is it a Banana? Is it a Cherry? 

If you believe that there is a  

75% chance that it is an Apple,  

and a 10% chance that it is a Banana, 

which question do you ask? 

Relevance Depends on Probability 

111 
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a a a 

b b b 

c c c 

ABC BAC CAB 

Is it an Apple? Is it a Banana? Is it a Cherry? 

AVAM AVVM AMVM 
0.3250)|( ACBId0.5623)|( BCAId 0.4227)|( ABCId

If you believe that there is a  

75% chance that it is an Apple,  

and a 10% chance that it is a Banana, 

which question do you ask? 

Relevance Depends on Probability 
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EXPERIMENTAL DESIGN 

113 



William B. Rossow 
City College of New York  
(formerly NASA GISS) 

Kevin H. Knuth, PI 
Univ at Albany (SUNY) 

Deniz Gençağa 

Carnegie Mellon Univ 

FUNDING: NASA ESTO 

Advanced Information Systems Technology, Knuth (PI)  

Cloud Modeling and Analysis Initiative, Rossow (PI), Knuth (co-I) 

4/24/2016 Knuth – SUNY Albany 114 

Earth Science Research Team 



www-rohan.sdsu.edu 
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Lorenz System 



www-rohan.sdsu.edu 

 

bzxyz

yrxxzy

xyx











 How do these variable influence one another? 

NOT OBVIOUS! 

NumberRayleighr

b







3/8

10
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Lorenz System 



http://en.wikipedia.org/wiki/File:Correlation_examples.png 

Joint Distributions of Two Variables X and Y 
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Correlation Coefficient Examples 



DE-CORRELATED     =     INDEPENDENT 
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Decorrelation does not mean Independent 



We use x to denote the state of the system out of a set of possible states X 

 
The surprise is large for improbable states and small for probable states.   
 

 
 
Averaging this quantity over all of the possible states of the system gives a 
measure of our knowledge about the state of the system 
 

 
 
 
which is called the entropy. 

)(

1
log)(

xp
xh 





XxXx

xpxp
xp

xpXH )(log)(
)(

1
log)()(
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Entropy 



An important quantity is given by the sum and difference of entropies, 

 
 

 

 

This is called the Mutual Information (MI) since it describes the amount of 
information that is shared between the two subsystems.  

 

 

 

 

Mutual Information is zero if X and Y are statistically independent. 
However, it is never zero in practice when computed from data. 

Need to quantify uncertainties! 

),()()(),( YXHYHXHYXMI 


 


Xx Yy ypxp

yxp
yxpYXMI

)()(

),(
log),(),(
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Mutual Information 



Schreiber (2000) introduced an information-theoretic quantity called the 
Transfer Entropy (TE).  Consider two subsystems X and Y, with data in the 
form of a two time series of measurements 

 

 

 

 

then the transfer entropy can be written as  

 

 

 

which describes the degree to which information about Y allows one to 
predict future values of X.  This is a potential measure of the causal influence 
that the subsystem Y has on the subsystem X.  
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Transfer Entropy 



The concepts behind the procedure are straightforward: 
 

1.  Estimate the probability density from which the data were sampled.  

2.  Using this probability density, estimate the various necessary entropies.   

 

Challenges 

First, difficult to perform objectively since probability density models often 

have free parameters that must be assigned. 

 

Second, we interested in the values of these quantities, but we are also 

interested in the associated uncertainties of our estimates. 

 

Third, Even worse, the entropy of the most probable density model does 

not correspond to the most probable entropy!  

(Jacobians come in to play) 
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Estimating Information-Theoretic Quantities 



Challenges 

First, difficult to perform objectively since probability density models often 

have free parameters that must be assigned. 

 

Second, we interested in the values of these quantities, but we are also 

interested in the associated uncertainties of our estimates. 

 

Third, Even worse, the entropy of the most probable density model does 

not correspond to the most probable entropy!  

(Jacobians come in to play) 
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Estimating Information-Theoretic Quantities 



Histograms can be viewed as simple models of the probability 

density from which the data were sampled.   

They are convenient since they have regions of constant 

probability. 
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Histograms as Probability Density Models 



N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100 

N = 10000, M = 47 N = 10000, M = 23 

The histogram should contain only details warranted by the data. 

But how do we choose the Number of Bins? 

N = 10000, M = 10 
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Histograms 



By integrating over all possible bin probabilities, we can derive the posterior 
probability of the number of bins given the data. 
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It is easier to find the number of bins that maximizes the logarithm of 

the posterior probability 
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where K is the implicit proportionality constant. 
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Bayesian Posterior for the Number of Bins 



function optM = optBINS(data,minM,maxM) 

if size(data)>2 | size(data,1)>1 
    error('data dimensions must be (1,N)'); 
end 

N = size(data,2); 

 

% Loop through the different numbers of bins 

% and compute the posterior probability for each. 

logp = zeros(1,maxM); 

for M = minM:maxM 

    n = hist(data,M);  % Bin the data (equal width bins here) 

    p = 0; 
    for k = 1:M 
 p = p + gammaln(n(k)+0.5); 
    end 

    logp(M) = N*log(M) + gammaln(M/2) – M*gammaln(1/2) - gammaln(N+M/2) + p; 

end 

[maximum, optM] = max(logp); 

return 
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optBins Algorithm 

Now featured in Mathematica as the Knuth Method 



“Optimal” Binning for N = 3000 Gaussian distributed data points: M = 14 
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“Optimal” Histograms 



The histogram should contain only details warranted by the data. 

N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100 

N = 10000, M = 47 N = 10000, M = 23 N = 10000, M = 10 
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The “Optimal” Histogram 



Entropy estimation is relatively easy with a constant-piecewise model 

N = 10000, M = 23 


i

ii ppH log

H = -sum(p .* (log(p) - log(vol))); 
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Entropy Estimation 



And also in higher-dimensions… 


 


Xx Yy

yxpyxpYXH ),(log),(),(
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Entropy Estimation 



To calculate the uncertainties in the entropy estimates, one must first realize 
that we are uncertain as to the bin probabilities of the probability density 
model. 
 

By sampling a set of bin probabilities, we obtain a set of probable density 
functions, along with a set of probable entropies. 

 

From this set of probable 

entropies, we can compute 

the mean and variance.  Thus 

quantifying both the entropy 

and our uncertainty. 
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Estimating Uncertainties 



Challenges 

First, difficult to perform objectively since probability density models often 

have free parameters that must be assigned. 

 

Second, we interested in the values of these quantities, but we are also 

interested in the associated uncertainties of our estimates. 

 

Third, Even worse, the entropy of the most probable density model does 

not correspond to the most probable entropy!  

(Jacobians come in to play) 
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Estimating Information-Theoretic Quantities 



Infer pdf  of  data 

pdf  #1 

pdf  #2 

pdf  #N 

H1 

H2 

HN 

Data 

Sample multiple pdf ’s from the  

posterior probability distribution  

of  pdfs 

Bayesian inference 

𝐻  ± 𝜎 𝐻 
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Estimating Entropy from Data 



Challenges 

First, difficult to perform objectively since probability density models often 

have free parameters that must be assigned. 

 

Second, we interested in the values of these quantities, but we are also 

interested in the associated uncertainties of our estimates. 

 

Third, Even worse, the entropy of the most probable density model does 

not correspond to the most probable entropy!  

(Jacobians come in to play) 
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Estimating Information-Theoretic Quantities 



This shows some of the results from sampling from the posterior probability 
and computing the entropies.   
 
The data was from a Gaussian distribution with  = 0,  = 1. 

The true entropy is Htrue = 1.419 

N = 10000, M = 24 

 
50000 Samples 

H =   1.4202 

         1.4161 

         1.4159 

         … 

         1.4211 

         1.4259 

         1.4290 

Hest = 1.423  0.007 

Note the unavoidable bias 
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Entropies from Sampling 



Mutual information requires the estimation of BOTH the two one-dimensional 
marginal entropies and two-dimensional joint entropy.  We can use the same 
sampling strategy for all cases. 

 

 

 

),()()(),( YXHYHXHYXMI 

H(X) H(Y) 

H(X,Y) 
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Estimating Mutual Information 



Cloud Cover and Seasonality 
Mutual Information between ISCCP percent cloud cover and Seasonality. 

 

 

 

 

 

 

 

 

 

 
The data consisted of monthly averages of percent cloud cover resulting in a time-series 
of 198 months of 6596 equal-area pixels each with side length of 280 km. 

This method finds the Inter-Tropical Convection Zones, The Monsoon Regions, the Sea 
Ice off Antarctica, and cloud cover in the North Atlantic and Pacific.   

Histogram Model 
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OptBINS Histogram Method 

Lorenz system r=24 (sub-chaotic regime) 
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Transfer Entropy Results 



Kernel Density Estimation 
(Prichard and Theiler, Grassberger & Procaccia) 

OptBINS Histogram Method Adaptive Partitioning 
(Fraser & Swinney, Darbellay & Vajda) 

Lorenz system r=24 (sub-chaotic regime) 
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Transfer Entropy Results 



Kernel Density Estimation OptBINS Histogram Method Adaptive Partitioning 

Lorenz system r=28 (chaotic regime) 
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Transfer Entropy Results 



Lorenz system models a two-dimensional convection roll uniformly heated  
from below and uniformly cooled from above. 

x: convective velocity 

y: vertical temperature difference  

z: mean convective heat flow 

  y 

   x 

   z vertical  
temperature difference 

mean convective 
heat flow 

convective 
velocity 
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Transfer Entropy Results Gencaga, Knuth, Rossow 

Entropy 2015, 17(1), 438-470 



Thank You! 
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