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Information Theory & Hydrology 
There have been a great many applications … (Singh 1997)* 

  

!  Derivation of Probability Distributions & Estimation of Pars 

!   Flow Forecasting via Maximum Entropy Spectral Analysis 

!  Basin Geomorphology - Characterization of Landscapes & River 
networks  

!  Design of Hydrological Networks for Data Collection 

!  Reliability of Water Distribution Systems 

!  Hydraulics 

!  Water Quality Assessment & Design of Water Quality Networks 

* Singh, V. P. (1997), The use of entropy in hydrology and water resources, Hydrological Processes, 11(6) 
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Incomplete Review of the Hydro. Lit. 

Amorocho & Espildor (WRR 1973) - Entropy In Assessment Of Uncertainty In 
Hydrologic Systems And Models 

In modeling catchments, a wide choice exists among models of varying completeness and 
sophistication à The concept of Entropy (via Transinformation) provides an objective 
criterion for model selection.  
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The Recent Revival … 
Amorocho & Espildor (WRR 1973)   Entropy In Assessment Of Uncertainty In Hydrologic Systems And Models 

 

 

Abebe & Price (HSJ 2003)   Managing Uncertainty In Hyd. Models Using Complementary Models  

Gupta et al (HP 2008)   Reconciling Theory With Observations: Elements Of A Diagnostic Approach 
To Model Evaluation 

Pokhrel and Gupta (WRR 2011)   On The Ability To Infer Spatial Catchment Variability Using Streamflow 
Hydrographs 

Weijs et al (HESS 2010)   Why Hydrological Predictions Should Be Evaluated Using Info. Theory  

Pan et al (JoH 2012)   Scale Effects On Info Theory-based Measures Applied To Streamflow Patterns 
In Two Rural Watersheds 

Weijs et al (HESS 2013)   Data Compression To Define Info Content Of Hydrological Time Series 

Gong et al (WRR 2013)   Estimating Epistemic and Aleatory Uncertainties during Hydrologic 
Modeling: An Info. Theoretic Approach 

Weijs & van de Giesen (JoH 2013)  An Information-theoretical Perspective On Weighted Ensemble Forecasts 

Nearing et al (JoH 2013)  Information Loss In Approximately Bayesian Estimation Techniques: A 
Comparison Of Generative And Discriminative Approaches …  

Weijs et al (HESS 2013)  Data Compression To Define Info Content Of Hydrological Time Series 

Nearing et al (WRR 2013)  An Approach To Quantifying The Efficiency Of A Bayesian Filter 

!
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The Recent Revival … 
Gong et al (WRR 2014)  Estimating Information Entropy For Hydrological Data: One-dim Case 

Sharma & Mehrotra (WRR 2014)  An Info Theoretic Alternative To Model A Natural System Using Obs Info 
Alone 

Nearing & Gupta (WRR 2015)  The Quantity And Quality Of Information In Hydrologic Models 

Gupta & Nearing (WRR 2015)  Using Models And Data To Learn: A Systems Theoretic Perspective On The 
Future Of Hydrological Sciences (WRR Debates) 

 !
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Some Themes Emerge 

²  Inherently Probabilistic Nature of Hydrological 
System Modeling 

²  Assessing Information Content of Data 

²  Improving Model Predictions 

²  Model Selection & Calibration 

²  Model Benchmarking “Best Achievable Performance” 

²  Assessing Power of Data Assimilation Strategies  

²  Evaluating & Improving Model Structures (Learning) 
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1 - Inherently Probabilistic Nature of 
Hydrological System Modeling 

Singh (HP 1997): Environmental systems are inherently spatial and complex, and our 
understanding is less than complete. Many are either fully stochastic, or part-stochastic/
deterministic, due to randomness in: 

a)  System Structure (geometry) 
b)  System Dynamics 
c)  Forcings (sources and sinks) 
d)  Initial and Boundary Conditions  

A stochastic description is needed à the Principle of Maximum Entropy (POME) enables:  

1)  Development of such a description 

2)  Determination of the least-biased PDF of a random variable, subject to available 
information.  

3)  Suggests whether available information is adequate, and if not then additional 
information should be sought. 

In this way it brings a model and its modeler closer.  
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2 - Assessing Information Content of Data 
Pan et al (JoH 2008): “Information Content” of precipitation time series is higher than 
streamflow, but the “Complexity” is higher for the latter à watersheds act as filters of 
precipitation info, which results in the observed additional complexity. Temporal effects of 
information are important and must be considered in model evaluation and comparison. 

Weijs et al (HESS 2013): Data Compression can be used to Quantify Info Content of 
hydrological time series à “How much can potentially be learned using a data set”). This 
requires first answering: 

(a)  Information about what? 

(b)  What is the current state of knowledge/belief about that?  

Quantification is closely linked to problems of (i) Separating Aleatoric and Epistemic 
uncertainties (ii) Quantifying Best Achievable Model Performance. 

Gong et al (WRR 2014): Discusses how to estimate Entropy of hydrologic (rainfall and 
runoff data) while dealing with practical problems of the (a) Zero Effect (discrete-continuous 
hybrid distributions), (b) Bin-Width Selection, (c) Finite Precision of Measurements, and (d) 
Skewness in the PDF. 
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3 - Improving Model Predictions 

Abebe & Price (HSJ 2003): Data-driven (ANN) approach based in Mutual Information 
can be used to model the prediction errors of a conceptual model, and added on top to 
improve the forecasts. 

Weijs & van de Giesen (JoH 2013): Present method for Weighting Ensemble Forecasts, 
based on an extension of POME, to ensure that no more information is added to the 
ensemble than is present in the forecast. Demonstrate that all other methods result in weights 
that add either too little or too much (i.e. fictitious) information to the ensemble. 
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4 - Model Selection & Calibration 

Amorocho & Espildor (WRR 1973): In modeling catchments, a wide choice exists 
among models of varying completeness and sophistication à The concept of Entropy (via 
Transinformation) provides an objective criterion for model selection.  

Weijs et al (HESS 2010): All models should be explicitly probabilistic, and all hydrological 
predictions should be evaluated using Information Theory. 

In practice, all Deterministic Forecasts are interpreted as uncertain by the user.  

Models should be calibrated using information-theoretical scores, to: 

a)  Maximize the information they provide 
b)  Extract all information from the observations 
c)  Avoid learning from information that is not there.  
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 5 - Model Benchmarking:  
Best Achievable Performance  

Gong et al (WRR 2013): Suggests a way to quantify “Best Achievable Performance” for a 
model via data-driven modeling, thereby characterizing Model Structure Adequacy.  

Presents way to estimate Model Adequacy in terms of its Aleatory Uncertainty (that cannot 
be diminished) and its Epistemic Uncertainty (that can be resolved by improving the model). 

Sharma & Mehrotra (WRR 2014): Propose an Info Theoretic approach to model natural 
systems using observational information alone, as an alternative to empirical or semi-
empirical approaches.  

Test their approach using synthetically generated data sets from known linear, nonlinear, and 
high-dimensional dynamic yet chaotic systems 
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6 – Assessing Power of 
Data Assimilation Strategies 

Nearing et al (JoH 2013): Uses Shannon’s theory to measure the information assimilated 
into models from observations and to characterize: 

(a)  Missing Information 
(b)  Used Information 
(c)  Bad Information.  

Shows that discriminative modeling (regression) to be more efficient than generative modeling 
(data assimilation) in extracting info from obs (so better suited for many practical problems). 

Nearing et al (WRR 2013): Uses metrics based on Discrete Shannon Entropy to quantify 
how much of the uncertainty in a Posterior PDF is due to: 

(a)  Observation operator 
(b)  Observation error 
(c)  Approximations of Bayes’ Law. 

Makes possible to analyze the efficiency of a proposed observation system and data 
assimilation strategy (e.g., EnKF does not use all of the info in soil moisture observations). 
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7 - Evaluating & Improving 
Model Structures (Learning) 

Gupta et al (HP 2008): Info Theory can be used to characterize “system-relevant” 
information in a data set (signature properties), and to develop a “Diagnostic Evaluation” 
approach to reconciling environmental theory/models with observations. 

Nearing & Gupta (WRR 2015): Quantify intuition that “models provide information”. 
Demonstrate that dynamical models use induction to assimilate and store information from 
hypotheses and data. Show how this stored information can be directly measured. 

Gupta & Nearing (WRR 2015): A perspective based in Info Theory can improve our 
ability to learn from the juxtaposition of models and data.  

Build upon the “Step-wise Characterization of Model Structure” proposed by Gupta et al 
(WRR 2012 - Towards A Comprehensive Assessment Of Model Structural Adequacy).  

Argue that we should give more emphasis to Process Modeling & System Architecture (i.e., 
incorporating knowledge from Physics) rather than on improving (what are generally semi-
empirical) System Parameterization Equations and on Parameter Estimation. 
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My Interest is the “Learning” Problem 

Models as a 
Strategy for Learning  

Models as a 
Strategy for Predicting 

Behaviors or Events 

✗ 
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Dynamical Environmental Systems Models 
 Working Definition  

A Dynamical Environmental Systems Model (DESM) is a simplified 
representation of the structure & function of a dynamical system that: 

1.  Enables  (a) Reasoning within an idealized framework  
 (b) Testable predictions under new circumstances. 

2.  By Encoding (a) Knowledge of Physics (conservation, thermodynamics)
 (b) Knowledge of System Geometry & Material Properties 

 (c) Knowledge of What we Know that we Do Not Know 

Why Simplified?  

a)  Knowledge is Incomplete & Uncertain 

b)  Real system is Infinite Dimensional 

c)  Need to “compute” in Finite Time 
using Finite Resources 

I 
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We Use DESM for Scientific Investigation 

 Intuitively 

We understand that “Models” & “Data” codify Knowledge 

about the World … in the form of Information 

I 

How ? 

How can I use this 
insight to improve 
my models ? 

How does 
“Learning” happen ? 
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What is The Nature of Information ? 

Info is the answer to questions such as: 
When, What, Where, How, Why …  

& How Much … etc.  

1 

2 
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What is The Nature of Information ? 1 

2 Info is always “about” something 
Context Matters 

DATA is not Info … until viewed in context 

3.14 

What ? 
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What is The Nature of Information ? 

Info is always “about” something 
Context Matters 

DATA is not Info … until viewed in context 

Streamflow 
(mt3/sec) 

3.14 

1 

2 
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Information is always “ABOUT” Something 

Info is always about 
!  Values (Y) 
!  Relationships (R: XèY)  
!  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

A single DATA Point encodes Info about: 
A Value of “Something” 

Y 

{Yobs} 

1 

2 
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Information is always “ABOUT” Something 

Info is always about 
!  Values (Y) 
!  Relationships (R: XèY)  
!  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

p Y( )
A set of DATA Points encodes Info about: 

The Distribution of Values 

Y 

{Yobs} 

1 

2 
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Information is always “ABOUT” Something 

Info is always about 
!  Values (Y) 
!  Relationships (R: XèY)  
!  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y D: {Xobs,Yobs} 

X 

A set of DATA Points encodes Info about: 
The space-time-ordered Relationships among 
those values 

1 

2 
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Information is always “ABOUT” Something 

Info is always about 
!  Values (Y) 
!  Relationships (R: XèY)  
!  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y 

X 

A MODEL encodes Info about: 
The space-time-ordered Relationships 
between variables ‘behind’ those values 

R : p Y | X( )
Mapping 

1 

2 
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Information is always “ABOUT” Something 

Info is always about 
!  Values (Y) 
!  Relationships (R: XèY)  
!  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y 

X 

A MODEL encodes Info about: 
Values p(Y|X,M) conditional on 
Relationships and Data 

R : p Y | X( )
Mapping 

p X = Xobs( )

p Y | Xobs,R( )

1 

2 

2016 Information Theory Workshop, Schneefernerhaus, Garmisch-Partenkirchen, Germany, April 24-28 



© Hoshin Gupta, The University of Arizona 

So … Learning Involves 

** Info is added by the “Conversion Process” 
** The conditioning role of Assumptions (A) is very strong 

coding 

MODEL DATA 

Converting Data-Info à Model-Info 

Algorithmic Info 
Theory (AIT) 

D: {Xobs,Yobs} p M |D,C( )

1 

2 
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And Occurs When … 

Our Prior Uncertainty is Changed  
due to the Assimilation of New Information 

“Changed” … 
not Reduced 

X 

Y pb R( )

pb R( )⇒ pa R( )

pa R( )

1 

2 

Prior Uncertainty 
about the Xà Y 
Relationship 
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pb R( )

So … How to Characterize Learning? 

Learning occurs when our Prior Uncertainty is Changed 
due to the Assimilation of New Information 

“Changed” … 
not Reduced 

1 

2 

pb R( )

pa R( ) Uncertainty Reduced 

pb R( )

Uncertainty Increased 

pa R( )

Uncertainty Shifted 

pa R( )
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But … Information Can Be 1 

2 GOOD 

BAD 

MIXED 
(Partially Good & Bad) 

Dealing with this is a 

MAJOR CHALLENGE to ESTIMATION THEORY  

Nearing GS, HV Gupta and W Crow (2013), Information Loss in Approximately Bayesian Data Assimilation: A Comparison 
of Generative and Discriminative Approaches to Estimating Agricultural Yield, Journal of Hydrology, 507, pp. 163-173  

Nearing GS, HV Gupta, WT Crow and Wei G (2013), An Approach to Quantifying the Efficiency of a Bayesian Filter, Water 
Resources Research, 49, 1–10, doi:10.1002/wrcr.20177  
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How do DESM’s Encode Information ? 1 

2 

3 

1. Control Volume, Physics, Processes to Include, 
System Geometry & Material Properties 

2. Scale, Dimension & 3D Spatial Structure  

3. Process Relationships 

4. Uncertainty 

5. Solution Methodology 

HCL 

HSA 

HPP 

HUN 
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Step One – Conservation Laws 
Information About: 

1.  Physics (conservation, thermodynamics), Physical Processes,  
System Geometry & Material Properties to include 

1 

2 

3 

Conceptual Model 

dXt

dt
=Ut −Yt

Ut,Xt,Yt{ }≥ 0

Xt ≥Yt

X 
Y U 

System Diagram 

Conservation Constraints 

Question: What knowledge to encode and what to ignore? 

Result: A System Diagram and Conservation Law Hypothesis - HCL 

Physical 
Structure 

Process 
Structure 
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Step Two – System Architecture 
Information About: 

2.  Scale, Dimension and 3D Spatial Structure of the State-Space 
(elements), to enable finite computation 

1 

2 

3 Question: What is a sufficiently complex, finite dimensional, spatially 
organized representation of sub-system architecture? 

Result: A System Architecture Hypothesis - HSA 

Spatially Detailed 

Lumped 
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Step Three – Process Parameterization 
Information About: 

3.  Process Relationships via Equations, that account for 
Sub-Element Process & Material Heterogeneity 

1 

2 

3 Question: What mathematical forms to use for the Process 
Parameterization equations, at the architectural scale of interest? 

Result: A Process Parameterization Hypothesis - HPP 

Xi 

Yij 
Xj 

Yij = fxy ΔXijj |θxy( )
?

Parameters are artifacts of 
equation choice  
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Step Four – Uncertainty 
Information About: 

4.  Uncertainties to be Accounted For 

1 

2 

3 
Question: What uncertainties are important, and how to represent 

them mathematically? 

Result: An Uncertainty Hypothesis - HUN 

Unc U( )

Unc H SA( )

Unc θ |HPP( )

Unc Y( )

Unc H PP( )

Unc Xo( )

Unc X( )
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Step Five – Solution Procedure 
Information About: 

5.  Procedure for ‘Solving’ the resulting Mathematical Model 

1 

2 

3 
Question: How to Integrate (in space & time) the resulting system of 

(stochastic) differential equations? 

Xo

X

timet

dXt

dt
= g Xt |θ( )

slope 

Xt

Xt+Δt

t +Δt

Xt+Δt
est

Result: A Computational Model  
à  Practical manifestation of the Overall System Hypothesis - HOS 

à  Structured hierarchy of Conservation Law, System Architecture, Process 
Parameterization, and Uncertainty Hypotheses - HOS = {HUN|HPP|HSA|HCL} 
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Information is Added at Each Step 
(Uncertainty is Changed)  

1 

2 

3 

1.  Conservation Laws restrict possible U-X-Y 
trajectories  

 

 

4.  Specification of Uncertainty characterizes 
and quantifies “known unknowns” 

 

 
5.  Solution Procedure converts Model Info & Input 

Info into specific (uncertain) X-Y trajectories 

2.  System Architecture (a) further restricts 
trajectories & (b) determines spatial variability 

3.  Process Parameterization (a) further restricts 
trajectories & (b) introduces “tunable” parameters θxy
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What Can Go Wrong? 
1.  Problem Becomes Over-Constrained 

    Due to Hypotheses that are Unjustifiably Strong  
a)  Neglect Heterogeneity that is important 

b)  Over-simplify the System Architecture 

c)  Incorrect Process Equations forms 

d)  Deterministic Process Parameterizations (instead of Stochastic) 

2.  Problem Becomes Under-Constrained 
 Due to Lack of Knowledge 

a)  Do not know Process Physics at the scale of system elements 

b)  Do not know Heterogeneity of Material Properties and Geometry at 
scale of system elements 

c)  Do not know (& account for) Heterogeneity of Material Properties 
and Geometry at scales smaller than the system elements 

1 

2 

3 

4 
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What Can Go Wrong? 
1.  Problem Becomes Over-Constrained 

    Due to Hypotheses that are Unjustifiably Strong  

1 

2 

3 

4 

Usually some Combination 
of Both 

2.  Problem Becomes Under-Constrained 
 Due to Lack of Knowledge 
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Conceptual Illustration 1 

2 

3 

time 

Q 

IF ALL GOES WELL WE CONVERGE 
AROUND THE DATA 
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Conceptual Illustration 1 

2 

3 

time 

Q 

IF INFO IS INCOMPLETE OR BAD … 
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We Try to “Fix” the Model Hypothesis Via Inference 
1 

2 

3 

4 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

Compute “Likelihood” of 

the Model Hypothesis 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Inference 
Engine 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 
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Parameter / State Estimation 1 

2 

3 

4 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

Compute “Likelihood” of 

the Model Hypothesis 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Inference 
Engine 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 

Maximize  L ( X ,θ| HUN, HPP , HSA , HCL , Data ) 

Assumed Correct 

Search Parameter and/or State Space 
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Process Parameterization Estimation 1 

2 

3 

4 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

Compute “Likelihood” of 

the Model Hypothesis 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Inference 
Engine 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 

Maximize  L (HPP| HUN, HSA , HCL , Data ) 

Assumed Correct 

Search Equation Forms 
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System Architecture Estimation 1 

2 

3 

4 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

Compute “Likelihood” of 

the Model Hypothesis 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Inference 
Engine 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 

Maximize  L (HSA , HPP| HUN, HCL , Data ) 

Assumed Correct 

Search System Architectures 
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But … ? 1 

2 

3 

4 

U1 Z1 

Is the Problem in 

Architecture or 
Parameterization? 

“Architecture” & “Parameterization” are generally treated together 

Maximize  L (HSA , HPP| HUN, HCL , Data ) 
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How to Infer System Architecture ? 1 

2 

3 

4 

5 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

X 

p Y | X( )Y 

Use a Maximum-Entropy Approach 

Process Parameterization Equations that impose only the 
Minimal Information required by Physics 
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What is A Maximum-Entropy Parameterization ? 1 

2 

3 

4 

5 

Yij = fxy Xijj |θxy( )
?

Typical Flux Parameterization à  

Yij =
fxy Xijj |θxy( )

Xij

⋅XijCan be written as à 

Yij = Kxy Xijj |θxy( ) ⋅XijOr à 
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What is A Maximum-Entropy Parameterization ? 1 

2 

3 

4 

5 

H1

H1

L

Flux =YK

G =
H1−H2

L
Basic Principle of 
Thermodynamics 

Assumes:  Medium is “homogenous” 
 Gradient established “instantaneously” 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy
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1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1
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What is A Maximum-Entropy Parameterization ? 1 
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1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

Consistent with physical principle that 

Larger gradients  à  Larger fluxes  
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What is A Maximum-Entropy Parameterization ? 1 

2 

3 

4 

5 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

Because sub-element conditions will generally be  

different (in an unknown manner)  

each time the gradient ∆X is applied 

4.          is a Probabilistic 
function of 
Kt

xy

Xt

Xt

Kt
xy ~ p Kt

xy | Xt( )
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1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

4.          is a Probabilistic 
function of 
Kt

xy

Xt

Xt

Kt
xy ~ p Kt

xy | Xt( )
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Maximum-Entropy Parameterization 1 

2 

3 

4 

5 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

X 

p Y | X( )Y 

Imposes only the minimal information required by Physics 

Randomly selected from a  
Maximum-Entropy Distribution  

of Random Functions 
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Inferring System Architecture 1 

2 

3 

4 

5 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

Using Process Parameterizations 

Run e.g., 10,000+ random cases (Monte Carlo on “Functions”) 

time 

Z 

Uncertainty after adding System Architecture 
U Q |HSA,HCL,P( )
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Inferring System Architecture 1 
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U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

Using Process Parameterizations 

Run e.g., 10,000+ random cases 

time 

Z 

p Lt |HSA,D( )
Lt HSA |D( )

Performance 

Compute the Likelihood of the 
Hypothesis given the Data 

L HSA |D( )
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Inferring System Architecture 1 
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U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

Using Process Parameterizations 

Run e.g., 10,000+ random cases 

time 

Z Ut Y |HSA( )
p Ut |HSA( )

Uncertainty 

Compute the Entropy of the Model 
Ensemble Simulations 

U Y |HSA( )
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Inferring System Architecture 1 

2 

3 

4 

5 

Bootstrap & Plot the Results 
For different System Architectures 

U
nc

er
ta

in
ty

   
U

 

Performance   -Ln L 

 

Max 
(U) 

0 
0 Max 

(–Ln L) 

A1 

A2 A3 

Target 
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Inferring Form of Process Parameterization 1 

2 

3 

4 

5 

6 

Use Bayesian Updating to Examine Parameterization Forms 
with Highest Performance 

(conditional on a selected Architecture) 

Y 

X 

Max 
Y 

0 
0 
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Inferring Form of Process Parameterization 1 
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Propose Mathematical Forms for Parameterization Equations 
(conditional on a selected Architecture) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )
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Inferring Form of Process Parameterization 1 
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Proceed with Parameter Estimation 
(conditional on a selected Architecture & Parameterization Form) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )
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Inferring Form of Process Parameterization 1 
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Proceed with Parameter Estimation 
(conditional on a selected Architecture & Parameterization Form) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )

Less certain about 
functional form 

More certain about 
functional form 
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The Result 1 
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Strategy to investigate System Architecture 

Without the need to make Strong Assumptions 
Regarding Process Parameterizations (Equations) 

In Principle a similar approach could be 
used to investigate value of different 

Conservation Laws 
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More Generally 1 
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Bring more “Honesty/Rigour” into the  
Model Building Process 

1)   Build Into the Model Clarity Regarding 
What We Feel Certain/Uncertain About 

2)   Be Clear about “What is Known” versus 
“What is Hypothesis / Assumption” 

“Maximum Entropy Approach” 
To Model Building 
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Some Comments in Conclusion 1 

2 

3 

4 

5 

6 

7 

1.  Models & Data codify Information about the world 

2.  Information implies Change in Uncertainty about Something 

3.  Models are Hierarchical Assemblages of Hypotheses 
1.  Conservation Laws 
2.  System Architecture 

3.  Process Parameterization 
4.  Uncertainty 

4.  Model Hypotheses can be: 
1.  Over-Constrained by un-justifiably strong hypotheses  
2.  Under-Constrained by lack of knowledge about 

a)   Scale-dependence of process relationships 
b)   Sub-element heterogeneity 

5.  System Architecture Inference can be done using Max-Entropy PP’s  

6.  Process Parameterization Inference can be done by Application 
of Bayes’ Law 
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And Finally … 

An Information Theory perspective can help improve the way we 
use models as Hypotheses for Scientific Investigation 

How does this 
system function ? 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

1 

2 

3 

4 

5 

6 

7 
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Thank You 

Learning 

Predictive 
Uncertainty 
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