
On the Information in Models:  
quantification of model structure adequacy 

with information based metrics 

Wei Gong, Junior Research Scientist 

GCESS, Beijing Normal University 

Email: gongwei2012@bnu.edu.cn 

April-24-2016 



Outlines 

• Information and model adequacy 

• Information metrics 

– manifold learning based method 

– ICA (Independent Component Analysis) 

• Estimating entropy for 1D case 

• Estimating entropy for multi-dimensional case 

• Discussions 

 

 



Information and model adequacy 

Given X，conditional entropy of Y 
Defined with conditional distribution 
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Entropy of Y 
Defined with marginal dist. 
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Random variables X，Y 
Input X，Output Y 
Marginal distribution fX(x) 
                                      fY(y) 
Joint distribution      f(x,y) 

Entropy：discrepancy of X —— similar with standard deviation 
Mutual Information：relationship between X and Y 



• Input: Xobs; Output: Yobs; Simulated: Ysim 

• Information requirement:  

 

• Information contributed by raw data: I(Xobs ;Yobs)  

 

• Information resolved by model: I(Ysim ;Yobs)  
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I(X1,X2,...,Xm;Y ) = H(X1,X2,...,Xm)+H(Y )-H(X1,X2,...,Xm,Y )

Information and model adequacy 



Data processing inequality 

• if X、Y、Z is a Markov chain X↔Y↔Z,  then 

 

• Y: input data, note as Data 

• X: observed output, note as Qobs 

• Z: simulated output, note as Qsim=f(Data) 

• Data processing inequality： 

 

There is no data processing method that can ‘create’ 
information, it can only use the information of data. 
Information from raw data is always more than that in simulated output. 

Epistemic uncertainty comes from  data processing inequality. 

   ; ;I X Y I X Z

   ; ;obs obs simI Q Data I Q Q

2.2 随机变量的信息度量 



Information and model adequacy 

• Best Achievable Performance (BAP) 

–  If a model can sufficiently use all the information 
offered by raw data, it achieves BAP. 

• How to qualify the total information offered 
by observed input/output data?  

    Namely, mutual information I(input;output). 

 

– Information metrics: manifold learning 

– Information metrics: ICA 

I(X1,X2,...,Xm;Y ) = H(X1,X2,...,Xm)+H(Y )-H(X1,X2,...,Xm,Y )



Approximate Nearest Neighbors (ANN) 
[Arya et.al., 1994; 1998; 2009] 

 
 
 
 
 
 
 
 
 
 

Find Nearest 
Neighbors 

[ANN] 

Estimate Shannon 
Information 

Entropy 
[kNNG] 

Dimensionality 
Reduction 
[ISOMAP] 

Compute 
Multivariate 

Mutual 
Information 

ISOmetric feature MAPping (ISOMAP) 
[Tenenbaum et.al., 2000] 

 
 
 
 
 
 
 
 
 
 

K-Nearest-Neighbor Graph (kNNG) 
[Leonenko et al., 2008] 

 
 
 
 
 
 
 
 
 
 

Chain Rule for 
Multivariate Mutual Information  

 
 
 
 
 

 

   

 

1 2

1 2

1 2

, ,..., ;

, ,...,

, ,..., ,

m

m

m

I X X X Y

H X X X H Y

H X X X Y







Information metrics:  
manifold learning  



ISOMAP 
• complete ISOmetric feature MAPing  [Tenenbaum, et al. 2000] 

• 3 steps 
– 1. Construct neighborhood graph 

         (Original: compute directly.  We use ANN query)  

– 2. Compute shortest geodesic paths 

         (Dijkstra algorithm) 

– 3. Construct m-dimensional embedding 

         (Multidimensional Scaling, MDS) 



Compute N-dimensional 
Entropy directly from kNNG 

• Use Leonenko’s method to compute Shannon entropy directly. 

• [Leonenko et.al. 2008] 

 

 

 

 

 

 

 

 

• Where: k is the number of nearest neighbor 

                    m is the intrinsic dimension given by ISOMAP 

                              is the distance between point xi and its i-th  

                             nearest neighbor 
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For hydrology data (have obs error), the estimated 
MI has similar trend, but significantly biased. 

3.4 水文数据的内在维数估计与互信息计算 

Estimated mutual information 
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Information metrics: manifold learning  

Original 



Information metrics: ICA 
• For 1D H(X): plug-in estimators (PDF => entropy) 

    bin-counting, kernel, ASH … 

• For high-dimension (>3D), curse of dimensionality 

    To hard to get PDF! 

• How to get 𝐻 𝑋1, 𝑋2, … , 𝑋𝑚  without computing high-
dimensional PDF? 

• If 𝑋1, 𝑋2, … , 𝑋𝑚 are independent, things becomes easy! 

𝐻 𝑋1, 𝑋2, …𝑋𝑚 = 𝐻(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, …𝑋1)

𝑚

𝑖=1

≤ 𝐻(𝑋𝑖)

𝑚

𝑖=1

 



How to compute 𝐻 𝑋1, 𝑋2, … , 𝑋𝑚 ? 

• If we can transform 𝐗 = [𝑋1, 𝑋2, … , 𝑋𝑚 ] into 
independent signals 𝐒 = [𝑆1, 𝑆2, … , 𝑆𝑚 ] ∶ 

 

 

 

• Only use 1D estimator, very Easy! 

 

 

 

𝐻 𝐗 = 𝐻 𝐀𝐒 = 𝐻 𝐒 + log det 𝐀  
                     =  𝐻(𝑆𝑖)

𝑚
𝑖=1 + log det 𝐀  



How to transform X to S 

• For Gaussian distributions – PCA 

    (Principle Component Analysis) 

• For non-Gaussian distributions – ICA 

    (Independent Component Analysis) 

 



What is ICA ? 

• 1) Assume a linear transformation: X = AS 

• 2) Inversely, S = WX 

• 3) Due to CLT, sum of X (namely 𝑦 = 𝒘𝑇𝒙) is 
more closer to Gaussian, if X is non-Gaussian. 

• 4) The metric of nongaussianity is Negentropy. 

• 5) ICA is find the optimal A that can maximize 
nongaussianity of 𝑦 = 𝒘𝑇𝒙. 



The great leap 

• Negentropy. 

 
• But we can use approximation of J base on nonquadratic 

function G (v is std Gaussian) 

 

 

• By estimating entropy with ICA, we got a more 
accurate estimation from a coarse estimation. 

𝐽 𝒚 = 𝐻 𝒚𝑔𝑎𝑢𝑠𝑠 − 𝐻(𝒚) 

𝐽 𝑦 ∝ [𝐸 𝐺 𝑦 − 𝐸{𝐺(𝑣)}]2 



Synthetic study 

P 

x 
b a 

Uniform distribution 

𝑋~𝑈(𝑎, 𝑏) 

𝐻 𝑋 = − 
1

𝑏 − 𝑎
𝑙𝑜𝑔
1

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

= log 𝑏 − 𝑎 = log (𝑟) 
r 

Similarly 

r1 

r3 

r2 

𝐻 𝑿 = log (𝑟1𝑟2𝑟3) 

For high-dimensional uniform distribution 𝐻 𝑿 = log (𝑟1𝑟2𝑟3…𝑟𝑚) 

Where m is the dimension 

𝐻 𝑿  doesn’t change under affine transformation. 



Synthetic study 

𝑟1, 𝑟2, … , 𝑟𝑚 =[1,2,3,…,10] 𝐻 𝑿 = log (10!) ≈ 15.1044 

Sample size N 1000 10000 100000 1000000 

1 15.4921 15.3116 15.2003 15.1495 
2 15.5636 15.3058 15.209 15.1511 
3 15.5431 15.2917 15.2043 15.1493 
4 15.5372 15.3166 15.1983 15.1519 
5 15.4783 15.3154 15.2041 15.1501 
6 15.4550 15.3157 15.1999 15.1496 
7 15.5668 15.3032 15.2018 15.1500 
8 15.5533 15.3236 15.2009 15.1506 
9 15.5415 15.3116 15.1949 15.1499 
10 15.4868 15.334 15.2041 15.1495 

mean 15.5218 15.3129 15.2018 15.1502 
var 0.00159 0.00013 1.5E-05 6.8E-07 

mean error 0.41737 0.20852 0.09736 0.04575 

Replicate 10 times for each sample size 

1) About 2.5% relative error when N = 1000, m = 10 
2) Error and variance decrease with increasing sample size N 

 



Case study 

• 1) Simulation study 

– Leaf River, 1948~1978, HyMod 

• 2) Inter-comparison of 3 catchments, 3 models 

– Leaf River, 1948~1978, HyMod and SAC 

– Chunky River, 1948~1978, HyMod and SAC 

– Chuzhou, 1980~2000, HyMod and X3M (Xinanjiang Model) 



simulation study 

• Assuming input variables P and PET are known. 
• Assuming the hydrological processes can be completely expressed by 

HyMod, namely, the true value of streamflow Qtrue is the simulation result 
of HyMod. 

• Artificially induce (heteroscedastic) error in P, PET and Qtrue, we get 
“observed” precipitation Pobs, pan evapotranspiration PETobs, and 
streamflow Qobs. 

• Qsim is the simulation result of HyMod with input Pobs and PETobs. 
• Because HyMod is the “true” model, I(Qsim;Qobs) = I(Pobs,PETobs,…;Qobs) 
• Compare I(Qsim;Qobs) and I(Pobs,PETobs,…;Qobs) 



simulation study 

Time delay = 3 days 
I(Qsim;Qobs) vs. 
        I(Pobs(t-1), Pobs(t-2), Pobs(t-3),PETobs(t-1), PETobs(t-2),PETobs(t-3),  
        Qobs(t-1) ,Qobs(t-2) ,Qobs(t-3);Qobs(t)) 



simulation study 

Relationships between 
different independent 
components 
1) They are independent 
2) Some interesting 

nongaussian patterns 
3) Outliers 
 
Dirty hack: add a small 
random error (1e-3mm), 
because of the zero values 
of precipitation. 



Case study of 3 catchments, 3 models 

• Leaf River, 1948~1978, HyMod and SAC 

• Chunky River, 1948~1978, HyMod and SAC 

• Chuzhou, 1980~2000, HyMod and Xinanjiang 
Model 

 



Information from data I(Input;Qobs) 



Case study of 3 catchments, 3 models 

Leaf River Chunky River Chuzhou 

HyMod I(Qsim;Qobs) 0.7591 0.8921 1.0583 

SAC       I(Qsim;Qobs) 0.9158 0.9268 - 

X3M      I(Qsim;Qobs) - - 1.2212 

BAP       I(Input;Qobs) 1.5956 1.5960 1.3895 

BAP is the mean mutual information of 4-10 days timedelay 
(the stable section of MI) 

Gong, W., H. V. Gupta, D. W. Yang, K. Sricharan, and A. O. Hero (2013), Estimating Epistemic & 
Aleatory Uncertainty During Hydrologic Modeling: An Information Theoretic Approach, Water 
Resour. Res., 49(4), 2253–2273, doi:10.1002/wrcr.20161. 



Estimating Entropy: 1D case 

• Difficulties for practical dataset: precipitation and river discharge 
– Zero effect: Many zero values 

– Optimal bin width: balance between bias and variance 

– Measurement effect: heteroscedastic observation error 

– Skewness effect: long tail distribution 

• How to fix? 
– 1D entropy equation for Hybrid PDF 

  𝐻 𝑋 = − 1 − 𝑘𝑥 log 1 − 𝑘𝑥 − 𝑘𝑥log 𝑘𝑥 − 𝑘𝑥  𝑓 𝑥𝑖  log 𝑓 𝑥𝑖  ℎ𝑖
𝑁𝐵𝑖𝑛
𝑖=1 −  𝑘𝑥𝑓 𝑥𝑖  ℎ𝑖  log(ℎ𝑖)

𝑁𝐵𝑖𝑛
𝑖=1  

– Optimal bin width using Scott’s equation 

ℎ∗ = 2 × 31/3𝜋1/6𝜎𝑁𝐷𝑎𝑡𝑎
−1/3 ≈ 3.49𝜎𝑁𝐷𝑎𝑡𝑎

−1/3 

– Box-Cox transformation to fix measurement and skewness effect 

– Extending to high-dimensional cases 

• Potential applications 
– Predictability 

– Ensemble forecast pre/post-processor and skill score 

– Uncertainty qualification 

 Gong, W., D. Yang, H. V. Gupta, and G. Nearing (2014), Estimating information entropy for 
hydrological data: One-dimensional case, Water Resour. Res., 50(6), 5003–5018, 
doi:10.1002/2014wr015874. 



Estimating Entropy: high-D cases 
Considering zero values 

Try to remove the dirty hack, but failed. 
Try to deal with the nonlinear case, 
 not successful yet! 



Discussion 1:  
data processing inequality 

• All information from (forcing) data 

    No information provided by model 

• Earth system model “paradox”: 

– Almost constant forcing: solar radiation 

– A lot of information: atm, land, ocean, ice 

• Why? 

   ; ;obs obs simI Q Data I Q Q

ocean 

land 

atm 

Solar 
Forcing 



Discussion 1:  
data processing inequality 

• All information from: 

                   Forcing data + information from model 

   ; , ;obs obs simI Q ForcingData ModelInfo I Q Q

Simple  
Hydro 
model 

Modern 
Hydro 
Model 

Land 
Surface 
Model 

Weather 
Forecast 
Model 

Earth 
System 
Model 

More complex modeling structure 

More information from model structure! 

Question: How to quantify the information from model? 



Discussion2: 
Information and toy model 

• Toy models in hydrology 

– Tank, sixpar, hymod, … 

• Toy models in atmosphere/climate 

– Lorenz95 (the 3D Lorenz is not good) 

• Toy models for fun: 

– The three bodies problem 

• Question: 

Let’s play with the toy models! 

A toy model library. 

 



Discussion3: 
Information in data 

• Estimating entropy for 1D case: 

• Estimating entropy and information for highD case: 

– Manifold learning: can identify nonlinearity, but biased ! 

– ICA: strong linear assumption, how to extend to nonlinear? 

– Other possible methods? 

• Copula function and copula entropy 

– Becoming more and more popular in hydrology 

– Good for long tail distribution: precipitation, etc. 

– Good for flood/drought analysis 

– Ensemble forecast/multi-model averaging 

 



• A growing demand of performance metrics! 

• RMSE of observables: only a snapshot  

• How to measure the consistence of dynamic 
processes? 

• How to deal with a huge amount of variables, and 
get the key dynamic features? 

• Information theory based metrics may have a great 
opportunity to do so! 

 

Discussion4: 
information based performance metrics 



Discussion4: 
information in network? 

• Big BOSS: Earth System Model 

• How to archiving good performance with the correct way? 

• ESMs have many outputs, constrain some of them may 
degrade others. 

• Simultaneously optimize all outputs? Too many! 

• New objective functions: 

  From ERROR of observables to CONSISTENCY of networks 

• Question: 

  How to quantify the consistency of networks? 

  Or, the similarity of networks? 



Discussion5: 
information and optimization 

• Equifinality: due to not enough information? 

• The information maybe enough: 

– Evidence 1: data driven models are better than dynamic 
hydrological models 

– Evidence 2: quantify the information in data 

• So why equifinality? 

– Maybe due to the inconsistency of model structure 

– In optimization, model is used as a regression function 

Multiple regression curves fit the data 

But not all of them are physically correct 



Joke ^-^ 

What’s the most significant improvement of 
hydrological models in the recent 30 years? 

Understanding more about hydrologic 
processes without improving the model 
performance! 



Stop joking 

• Information provider: 

– More complex model structure and more input data in the 
recent 30 years. 

– Distributed hydrological model 

• Information consumer 

– More output variables rather than streamflow 

– Higher temporal/spatial resolution 

• Question: 

Performance not improved because there are more 
“information consumer”? 




