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Outlines

* Information and model adequacy

* Information metrics
— manifold learning based method
— ICA (Independent Component Analysis)

e Estimating entropy for 1D case
e Estimating entropy for multi-dimensional case

 Discussions
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Random variables X, Y A
Input X, OutputY £ (ylx)
Marginal distribution f(x) Y vl

fY(y)
Joint distribution  f(x,y)

Entropy of Y
Defined with marginal dist.

H(Y)=f, (y)log f, (y)dx

Given X, conditional entropy of Y
Defined with conditional distribution

H (Y 1X) = fyx (Y1X)10g fyp (v [ %) dx

Information from X to Y (Mutual information)

L(X;Y) =[] f(xy)log S E)E)X’lezy)dxdyz H(Y)=H (Y £X)

Entropy: discrepancy of X —— similar with standard deviation
Mutual Information: relationship between Xand Y o
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: Aleatory Uncertainty
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% % | Random Uncertainty
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H(Ynobs) I(Xobs’ Yobs) I(Y.'.lrn Yobs)
* Input: X, Output: Y, Simulated: Y,
* Information requirement: H(Y,.)
H( ) ZP InR _—Zf (Yiar2) A In(fy(yi+112)Ai)
+ Information contributed by raw data: (X b Yops)
10X, Xy X, ¥) = HOG Xy X, )+ H(Y) - H(Xy Xy X, Y)
[ J

Information resolved by model: I(Y,,.;Y.,.)

f)‘cy( ’y) d)Cdy

J =5 \‘ﬁ»ﬂjjy

I(X;Y)= ”fxy(x y)ln
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If X. Y. Zisa Markov chain XY« Z, then
1(X;Y)>1(X;2)

Y: Input data, note as Data

X: observed output, note as Q.

Z: simulated output, note as Q,;,=f(Data)

Data processing inequality:

| (Qyue; Data) > 1(Qy; Qqn )

There is no data processing method that can ‘create’
information, it can only use the information of data.

Information from raw data is always more than that in simulated output.
Epistemic uncertainty comes from data processing inequality.
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Best Achievable Performance (BAP)

— If a model can sufficiently use all the information
offered by raw data, it achieves BAP.

How to qualify the total information offered
by observed input/output data?

Namely, mutual information I(input;output).
(X, X, X ) Y)=H(X, X,,.. X )+ H(Y)- HX,X,,...X ,Y)

— Information metrics: manifold learning . -

— Information metrics: ICA
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Information metrics:

manifold learning

Find Nearest
Neighbors
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[ANN]

Dimensionality

Approximate Nearest Neighbors (ANN)
[Arya et.al., 1994; 1998; 2009]
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Reduction
[ISOMAP]

Estimate Shannon

ISOmetric feature MAPping (ISOMAP)
[Tenenbaum et.al., 2000]

Information
Entropy
[KNNG]

Compute
Multivariate

K-Nearest-Neighbor Graph (kNNG)

Mutual
Information

Chain Rule for
Multivariate Mutual Information

| ( Xy Xy X3 ) =
H ( Xy, Xy, X )+ H(Y)
—H (X;, Xy X1, Y)

| = - - A T 2
D= =D == =}
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 complete ISOmetric feature MAPINg [Tenenbaum, et al. 2000]

* 3steps
— 1. Construct neighborhood graph
(Original: compute directly. We use ANN query)
— 2. Compute shortest geodesic paths
(Dijkstra algorithm)
— 3. Construct m-dimensional embedding
(Multidimensional Scaling, MDS)

A B Cc
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Entropy directly from KNNG

* Use Leonenko’s method to compute Shannon entropy directly.
 [Leonenko et.al. 2008] :

1 L
H. = HZ log &, ;
)

= (Dol ¥ (KN, (dh) ol
W (K)=T"(k)/T (k) of
vV o=7"? /F(m/2+l) o

0.2

0.1

i
0

* Where: k is the number of nearest neighbor N2
m is the intrinsic dimension given by ISOMAP N
eﬁi}]_l is the distance between point x; and its i-th ;

L S g "

nearest neighbor
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0.6 0.8 1 1.2
Estimated mutual information / (nat)

For hydrology data (have obs error), the estimated .,
MI has similar trend, but significantly biased. ™ v
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* For 1D H(X): plug-in estimators (PDF => entropy)
bin-counting, kernel, ASH ...

* For high-dimension (>3D), curse of dimensionality
To hard to get PDF!

* How to get H(X{, X5, ..., X,;;) without computing high-
dimensional PDF?

* If X{,X,,...,X,, are independent, things becomes easy!

m m
HOX X, X) = ) HOGWK 0, X1 X) < ) HOGD)
i=1 i=1
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* If we can transform X = [X;, X5, ..., X, | into
independent signals S =[5, 5>, ..., S;p,

H(X) = H(AS) = H(S) + log|det(A)]
= Yi=1 H(S;)+log|det(A)

* Only use 1D estimator, very Easy!
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For Gaussian distributions — PCA
(Principle Component Analysis)
For non-Gaussian distributions — ICA

(Independent Component Analysis)
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1) Assume a linear transformation: X = AS
2) Inversely, S = WX

3) Due to CLT, sum of X (namely y = wx) is
more closer to Gaussian, if X is non-Gaussian.

4) The metric of nongaussianity is Negentropy.

5) ICA is find the optlmal A that can maximize
nongaussianity of y = w' x. :
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The great leap
* Negentropy.

]()’) — H(ygauss) - H(y)

* But we can use approximation of J base on nonquadratic
function G (v is std Gaussian)

J() < [E{G} — E{G(v)}]?

* By estimating entropy with ICA, we got a more
accurate estimation from a coarse estimation.
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Uniform distribution

N
P X~U(a,b)
H(X) = Jb L log——dx=log(b—a) =1
r = ab_aogb_ax—og a) = log(r)
> "
> X

a b

Similarly
3 H(X) =log(rr,rs)
r
ry

For high-dimensional uniform distribution H(X) = log(r;1,13 ...
Where m is the dimension
H(X) doesn’t change under affine transformation.
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Synthetic study

11,75, ..., ] =[1,2,3,...,10] H(X) =log(10!) = 15.1044

Replicate 10 times for each sample size

Sample size N 1000 10000 100000 1000000
1 15.4921 15.3116 15.2003 15.1495
2 15.5636 15.3058 15.209 15.1511
3 15.5431 15.2917 15.2043 15.1493
4 15.5372 15.3166 15.1983 15.1519
5 15.4783 15.3154 15.2041 15.1501
6 15.4550 15.3157 15.1999 15.1496
7 15.5668 15.3032 15.2018 15.1500
8 15.5533 15.3236 15.2009 15.1506
9 15.5415 15.3116 15.1949 15.1499
10 15.4868 15.334 15.2041 15.1495
mean 15.5218 15.3129 15.2018 15.1502
var 0.00159 0.00013 1.5E-05 6.8E-07
mean error 0.41737 0.20852 0.09736 0.04575 , ~ @
- e
WY (@S
1) About 2.5% relative error when N = 1000, m = 10 o
2) Error and variance decrease with increasing sample size:N« %

A

o
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e 1) Simulation study
— Leaf River, 1948~1978, HyMod

e 2) Inter-comparison of 3 catchments, 3 models
— Leaf River, 1948~1978, HyMod and SAC
— Chunky River, 1948~1978, HyMod and SAC
— Chuzhou, 1980~2000, HyMod and X3M (Xinanjiang Model)
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Pl TE PET
bexp ) |
¢ | Xquick]| Kq Kq | [[Xquick3 \_P,(f' Q.
- —_— .
C : :
x ] 14
s
i

* Assuming input variables P and PET are known.

* Assuming the hydrological processes can be completely expressed by
HyMod, namely, the true value of streamflow Q.. is the simulation result
of HyMod.

* Artificially induce (heteroscedastic) error in P, PET and Q,,., we get
“observed” precipitation P, ., pan evapotranspiration PET,, ., and
streamflow Q...

* Q,, is the simulation result of HyMod with input P_,. and PET_,
* Because HyMod is the “true” model, I(Qg;,,;Q.p) = I(Pypss PET pes - Qobs) -
e Compare I(Qsim;Qobs) and I(Pobs,PET bsr+ Qobs) o
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Estimated Mutual Information - ICA

—%— Ture VYalue
—=— |2A Estimated |-

L

—
T

Wutual Informmation £ (nat)
k-2

|:| 1 ] ] ]
0.0%5 0.1 015 0.2 0.25 0.3

standard Deviation of Adificially (nduced Error o

Time delay = 3 days

I(Q*sim;(lobs) Vs. . S ’ \i* —;iff
1(Pops(t-1), Pops(t-2), Pops(t-3),PET,y (t-1), PET o (6-2),PET o (t-3), 1o e - £ =
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Relationships between

different independent

components

1) They are independent

2) Some interesting
nongaussian patterns

3) Outliers

Dirty hack: add a small
random error (1e-3mm),
because of the zero values
of precipitation.
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e Leaf River, 1948~1978, HyMod and SAC
* Chunky River, 1948~1978, HyMod and SAC

* Chuzhou, 1980~2000, HyMod and Xinanjiang
Model




$_o § i e
3 NEE Y -

P Beijing Normal University

Information from data I(Input;QobS) SIRT A SRR F T

GCESS College of Global Change and Earth System Science

Mutual Information - BAP
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Case study of 3 catchments, 3 models

HyMod 1(Q;,;Qqp)  0.7591 0.8921 1.0583
SAC  I(Q,;Q,,) 0.9158 0.9268 -

X3IM Qg Qs - - 1.2212
BAP  I(Input;Q,,,) 1.5956 1.5960 1.3895

BAP is the mean mutual information of 4-10 days timedelay
(the stable section of M)

2507
e
A T @ ia%
) » ( —~ "\\'. = n . .) 2 _{‘\‘
NBACS .

Gong, W., H. V. Gupta, D. W. Yang, K. Sricharan, and A. O. Hero (2013), Estimating Epistemic & i
Aleatory Uncertainty During Hydrologic Modeling: An Information Theoretic Approach, Water

Resour. Res., 49(4), 2253—-2273, doi:10.1002/wrcr.20161.
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Estimating Entropy: 1D case s &fstaeinanimms

» Difficulties for practical dataset: precipitation and river discharge
— Zero effect: Many zero values
— Optimal bin width: balance between bias and variance
— Measurement effect: heteroscedastic observation error
— Skewness effect: long tail distribution

* How to fix?
— 1D entropy equation for Hybrid PDF

HX) = —(1 = k) log(1 — k) — kylog(hy) — by X5 £ (1) 1og(f () hy = X4 ke f (x:) by log(hy)
— Optimal bin width using Scott’s equation
h* =2 x3V30Y66Ny ., Y3 ~ 3.490Np 4y~ 3
— Box-Cox transformation to fix measurement and skewness effect
— Extending to high-dimensional cases

* Potential applications
— Predictability | N |

— Ensemble forecast pre/post-processor and skill score wuw W,

— Uncertainty qualification & v
Gong, W., D. Yang, H. V. Gupta, and G. Nearing (2014), Estimating information entropy for

) hydrological data: One-dimensional case, Water Resour. Res., 50(6), 5003-5018,
2 doi:10.1002/2014wr015874.
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3D-entropy+

FDr' X]_ :: ﬂ,X: E u_.Xz E ﬂ*—'

Ek,q i vproportionof- X, = 0,4, > 0,X; > 0+

kos proportion of. X, = 0,X. > 0.X, > 0 Try to remove the dirty hack, but failed.

Koon:-proportion-of- X, = 0,X; = 0,X; > 0« Try to deal with the nonlinear case,
Eyo:iproportion-of- X; = 0.X, = 0,X; > 0« not SUCCESSfUI yet'

kiiovproportionof- X, = 0.X, = 0,.X; =0«
kgio-proportionof- X, = 0,X, = 0,X; =0+
Egoorproportionof- X, = 0.4, = 0,.X; = 0+
k) gorproportionof- X, = 0,4, =0,X; =0+
+

—H{X . X2 X3) =k loghky i J:ﬂ-f{xl.xz.xg} log[f (xy. X4, x3)] dxydx.dx; + kg, log(h hahy)
+ kg logko,, + kouy J] flxg. xg) loglf (x;. x5)] dxgdxg + Koy, log(hohy)
+ kgoplogkan; + Kooy J-f(xa} log[f(x;)]dx; + Kooy log(hs)
+ kyoplogkygy + ks J- fixg x3) loglfxy, x5)] dxydxg + kyg, log(hyhg)
+ kyygloghy o + K110 ﬂ fixy. 2 loglf(x,. x5)] dx, dx, + ko log(h ha)

+ korologkpio + Koio J.f{x:} log[f(x2)]dxs + kgyolog(ha)
+ kggologkyoo

+ kyoologkioo + Koo J-f(xl}l‘:'g[f(xx}] dx; + kygplog(hy) +

= = =T =T

e, e e,
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data processing inequality

I (Qobs; Data) 2 I (Qobs;Qsim)
e All information from (forcing) data
No information provided by model

I((

e Earth system model “paradox”:
— Almost constant forcing: solar radiation
— A lot of information: atm, land, ocean, ice

e Why?

atm

%

. Solar

Forcing
%
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Discussion 1: & sssesmsnsnsmss
data processing inequality

| (Q,,; ForcingData, ModelInfo) > 1 (Q,,; Qi )

e All information from:
Forcing data + information from model

Simple Modern Land Weather Earth
Hydro =) Hydro mmmm) Surface BEEE) Forecast EEEED System
model Model Model Model Model

More complex modeling structure

» o 4 1 5
3 L
“Q e A

S = — 2 S S e
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Information and toy model

Toy models in hydrology
— Tank, sixpar, hymod, ...

Toy models in atmosphere/climate

— Lorenz95 (the 3D Lorenz is not good)

Toy models for fun:
— The three bodies problem

* Question:
Let’s play with the toy models!

A toy model library.
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Information in data

e Estimating entropy for 1D case:

e Estimating entropy and information for highD case:
— Manifold learning: can identify nonlinearity, but biased !
— |CA: strong linear assumption, how to extend to nonlinear?
— Other possible methods?

e Copula function and copula entropy
— Becoming more and more popular in hydrology
— Good for long tail distribution: precipitation, etc:

— Good for flood/drought analysis
— Ensemble forecast/multi-model averaging
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Discussion4: Gotss ERE{LSHHRGHSTL:
information based performance metrics

A growing demand of performance metrics!
RMSE of observables: only a snapshot

How to measure the consistence of dynamic
processes?

How to deal with a huge amount of variables, and
get the key dynamic features?

Information theory based metrics may have a great
opportunity to do so! :
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Discussiond: 54 ssseswssansoan
information in network?

* Big BOSS: Earth System Model
 How to archiving good performance with the correct way?

 ESMs have many outputs, constrain some of them may
degrade others.

e Simultaneously optimize all outputs? Too many!
 New objective functions:
From ERROR of observables to CONSISTENCY of networks

e Question:

How to quantify the consistency of networks?
Or, the similarity of networks?
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information and optimization

e Equifinality: due to not enough information?
* The information maybe enough:

— Evidence 1: data driven models are better than dynamic
hydrological models

— Evidence 2: quantify the information in data
* So why equifinality?
— Maybe due to the inconsistency of model structure
— In optimization, model is used as a regression function (‘
Multiple regression curves fit the data

But not all of them are physically correct
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What’s the most significant improvement of
hydrological models in the recent 30 years?

Understanding more about hydrologic

processes without improving the model
performance!
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* Information provider:

— More complex model structure and more input data in the
recent 30 years.

— Distributed hydrological model
* Information consumer

— More output variables rather than streamflow
— Higher temporal/spatial resolution

Question:

Performance not improved because there are. more
“information consumer”? \BAC
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Thank You!
Comments and questions




