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  Predictions from ‘coarse’ models tuned from data    

  Why information theory ?    

  Multi-model ensemble predictions & info theory       

  Simple example      

  Summary & outlook      

“All models are wrong but 
some are useful” G.E.P.  BoxOutline:



  Accurate probabilistic predictions from coarse-grained models 

“truth”    at time 
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  In reality ...  

maximise information content
in the model 
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  Optimisation of models & their predictions 

• Tuning: Minimise the lack of information in the imperfect predictions by improving 

the models in the “training phase” (when lots of data is available)

• Use real-time data in the “prediction phase” (time-sequential data assimilation)
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 “Best-fit” coarse-grained model to “fine-scale” dynamics/data  

  Optimisation of models & their predictions 

Goals:

 UQ for multi-scale problems  

 Sensitivity analysis, robustness, parameter identifiability  

Key notions:

 Metric                or a pre-metric                  on the space of probability  
 measures   

d(µt, ⌫t)

 Accuracy/error for observables  

  Sensitivity under perturbations                       or           µ✓
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  Optimisation of models & their predictions 

    -entropies (or their rates in path-space). In particular,  the relative 

��Eµt [f ]� E⌫t [f ]
�� 6 |f |1

p
2DKL(µtk⌫t)

Key tools:
�
entropy (Kullback-Leibler divergence)

DKL(µk⌫) :=
Z
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  ‘Information’ inequalities for specific observables   , e.g.,    f
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�1/2 p
DKL(µtk⌫t)

(Pinsker)

  Sensitivity analysis (Fisher information, linear response to perturbations) 
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2�

2(⇡,⇡f)

Dkl(⇡ k⇡m)P(�,�m
) =

Z
� log

�

�m

model density   

  Model error 

The relative entropy                     quantifies the lack of information in       relative to 

⇡m(uuu)

   Measure of the lack of information in models 
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(ii)                      is invariant under nonlinear changes of variables   

(i)                                                 ⇡ = ⇡mi�,
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marginal truth density   

(e.g., resolved Fourier modes)   

Dkl(⇡ k⇡m) > 0 Dkl(⇡ k⇡m) = 0

Dkl(⇡ k⇡m) > 0

Dkl(⇡ k⇡m) > 0

Dkl(⇡ k⇡m)
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  Model error,  internal prediction skill and sensitivity

  Model error

Lack of information in the imperfect model density compared to the perfect 
statistical forecast  

  Internal prediction skill

  Model sensitivity

Information beyond the climate  in the perfect/imperfect model forecast.  

Lack of information in the perfect/imperfect unperturbed climate relative to the 
statistical forecast of response to external or internal perturbations.

  Prediction skill
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 Branicki, Nonlinearity, 2012                             



       :   class of imperfect models with marginal densities 

  The best model                     minimises the lack of information     

  Tuning imperfect models

M

m⇤ 2 M

⇡m

⇡ :   true marginal density

“information” barrier  

optimised model

 For      the max-entropy approximation of     based on     moment constraints ⇡ l
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time

t
Dkl(⇡ k⇡m⇤) = min

m2M
Dkl(⇡ k⇡m)

⇡l

T
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 Improving imperfect predictions via tuning attractor fidelity
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Improving attractor fidelity of model improves predictionsFACT:
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 Branicki, Enc.  Appl. Math, 2015                             
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Improving attractor fidelity of MME improves predictionsFACT:

 Improving probabilistic predictions by tuning attractor fidelity
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��ĒEE���1/2
L2(F)

+O �
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  Use a single model or a mixture of models for best predictions ?

truth 

time

  Useful properties: Convexity of the relative entropy in the second argument &  
      the ‘triangle’ inequality 
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  Multi-model Ensemble (MME) predictions

, , .

Dkl(⇡ k⇡mi) = Dkl(⇡ k⇡l) +Dkl(⇡
l k⇡mi)
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 Use a mixture of models instead of a single model when (necessary cond.)

 Weaker criterion for prediction improvement using MME given error of individual   
 models. 

 Why relative entropy?

  Multi-model Ensemble predictions

Gives good bounds on predictive skill for attractor perturbations. 
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 Sufficient condition for using MME given only the error of individual models 
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where         and            are the least biased densities

maximising the Shannon entropy

  Improving imperfect predictions via the MME approach 

with 
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Theorem.

General formulation  ( see Branicki & Majda,  J. Nonlin. Sci. 2015 )



  Condition for improving forced response predictions via MME approach



  Improving imperfect predictions via the MME approach 

MME better than        (  )  when

Necessary condition:

“finite-dim” sketch

DI
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↵ )�DI
kl(⇡ k⇡m⇧) < 0
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  Improving imperfect predictions via the MME approach 

Use a single model or a mixture of 
models for best predictions ?

use mixture 

use single
model  

information barrier

Dkl(⇡t k⇡m
t )
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 Improving imperfect predictions via improving model fidelity
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Improving attractor fidelity of model improves predictionsFACT:
(simplest case for least-biased/max-entropy models)

 Branicki, Enc.  Appl. Math, 2015                             

More details:
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  Reduced-order model & stochastic parameterisation

  Model improvement

  Exactly solvable test models for turbulent tracer with realistic features 

@TM

@t
+ v̄vvM ·rTM = (+ eddy) �TM + �T Ẇ

@T

@t

+ v

v

v(xxx, t)·rT = �T
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Non-Gaussian passive tracer with 
mean gradient

tracer spectrump(T )

T = ↵y + T

0(x, t)

@TM

@t
+ v̄vvM ·rTM = (+ eddy) �TM + �T Ẇ

Dkl(⇡ k⇡m⇤) = min
m2M

Dkl(⇡ k⇡m)

 Majda & Branicki, DCDS 2012



  Exactly solvable test models for turbulent tracer with realistic features 

  Fourier domain 

  Physical space 

  Rigorous justification/critique of various turbulent closures
  Non-local effects due to mean flow - fluctuation interactions

  Identification of mechanisms for intermittency 

Majda & Branicki DCDS 2012

@t T + v

v

v(xxx, t)·rT = �T

⇡(T 0)

k

T̂k

T = ↵y + T

0(x, t)
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Majda & Gershgorin, Proc. Roy.Soc. 2011  
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  Improving reduced-order models for turbulent tracer 

Model error on attractor for models with optimised noise is greatly reduced

k = 1

k = 5

�T = 0 �T optimal
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Baby configuration: model improvement on attractor by simple noise inflation 
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  Improving reduced-order models for turbulent tracer 
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Forced response for attractor-tuned model  
with optimal noise 

T

E
[T

]
V
ar

(T
)

�f



  Information-theoretic improvement of predictive skill of GCMs 

joint work with R. Leung, S. Hagos, G. Lin & A. Majda 
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Z t
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Rūuu(t� s)�f(t)ds

“Climate change” 
error

FDT

FDT
(fluctuation-dissipation

relationships)

(stalled for now …) 
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  Summary:

 Sufficient condition for improving imperfect predictions via MME approach  
    obtained within the information-theoretic framework

If correctly implemented, the MME framework is useful for improving forced 
response of the unknown truth dynamics based solely on the information from its 
statistical equilibrium 

 This formulation can be extended to MME prediction with filtering/data     
           assimilation algorithms 

 Information-theoretic framework is useful for UQ on reduced subspaces  
    of dynamical variables

25

  The framework naturally suited to deal with model error and partial observability  
     of the true dynamics 

 Pathspace framework in development, including more detailed measures of  
     predictive fidelity

 Natural synergy between the information theoretic framework and empirical data

 Systematic framework for dimensionality reduction and ‘information retainment’  
      depending on amount/quality of available data and computational cost 

  Information-theoretic optimization of imperfect models requires simultaneous  
    tuning of statistical moments and can significantly improve prediction skill and  
       sensitivity of imperfect models 



Majda & Gershgorin,  Improving Model Fidelity and Sensitivity for Complex Systems    
                                   through Empirical Information Theory,   PNAS  2011

Majda & Gershgorin,  The Link Between Statistical Equilibrium Fidelity and Forecasting  
                                 Skill for Complex Systems with Model Error,   PNAS  2011

Branicki & Majda,  Quantifying uncertainty for predictions with model errors in 
                                   non-Gaussian models with intermittency,  Nonlinearity,  2012

 Majda & Branicki,  Lessons in UQ for Turbulent Dynamical Systems,  DCDS 2012
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 Extras:

   Model error reduction, tuning and information barriers:   
A simple example linear Gaussian example

Improving “climate change” predictions by tuning on attractor:  
   Linear response theory & fluctuation-dissipation constraints. 



   Model error reduction, tuning and 
information barriers:   A simple example 

linear Gaussian example

  Perfect model

 Gaussian equilibrium if 

a+A < 0, aA� q > 0.

  Imperfect model: Mean Stochastic Model

‘resolved’ dynamics

‘unresolved’ dynamics

−1 0 1

−1

0

1

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1

−1

0

1

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

u̇ = au+ v + F

v̇ = qu+Av + �Ẇ

u̇m = ��mum + Fm + ⇥mẆm
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  Tuning the marginal statistics on attractor

  Infinite-time response to change in forcing

Perfect model Imperfect model 

  Tuning the imperfect model equilibrium statistics 

truth model 

tuning at unperturbed 
equilibrium 

perturbed forcing
F + �F

?

ūm

V ar[um]

Fm⇤
�m⇤

= � AF

aA� q
,

�2
m⇤

2�m⇤
= � �2

2(aA� q)(a+A)
,

�ū1
m⇤ =

1

�m⇤
�F�ū1 = � A

aA� q
�F

duM

dt
= ��MuM + FM + �MẆM .

�m

�m

(Fm⇤,�m⇤)fixed

free

�m

u̇m = ��mum + Fm⇤ + �m⇤Ẇm

  The imperfect model 

�m
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  Model error & information barriers

Model error on the perturbed attractor

Branicki & Majda,  Quantifying uncertainty for 
predictions with model errors in non-Gaussian 
models with intermittency,  Nonlinearity,  2012

 Majda & Branicki,  Lessons in Uncertainty   
 Quantification for Turbulent Dynamical  
 Systems,   DCDS 2012                                                     

More details in:

P(⇡�F ,⇡
m⇤
�F ) /

�����
A

aA� q
+

1

�m⇤

�����|�F |2
a+A < 0, aA� q > 0.A

v̇ = qu+Av + �Ẇ

u̇ = au+ v + F

u̇m = ��mum + Fm⇤ + �m⇤Ẇm

A

�m

�m > 0�m

               A > 0 :

No minimum  of       for finite �m > 0P
Intrinsic barrier to improving sensitivity
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2

                A < 0 :

�⇤
M = �A�1(aA� q), A < 0

Perturbed attractor fidelity and  
                  sensitivity captured for 

�mprf



  Model error & information barriers in MME prediction

m⇧ mi
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  MME prediction with no information barrier

time time time



  MME prediction with information barrier A > 0 :

  The infinite time 
response can be  

   improved for any 
overdamped 

ensemble               
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v̇ = qu+Av + �Ẇ

u̇ = au+ v + F

u̇m = ��mum + Fm⇤ + �m⇤Ẇm

A

�m

  The MME prediction 
does not reduce the  

    information barrier                



  Improving “climate change” predictions by tuning on attractor:  
   Linear response theory & fluctuation-dissipation constraints. 
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 Essentials of FDT

   Original system  

(e.g., Majda,  Abramov, Grote 2005)

vvv 2 IRK

Lfp peq(vvv) = 0   Invariant measure  

A(uuu) ⌘
Z

A(uuu)peq(vvv)dvvv   Expected value of  A  

fff ! fff + �fff   Perturbed system

L�
fp p

�
eq(vvv) = 0   Invariant measure  

   Expected value of  A  A(uuu)
�

uuu 2 IRN ⇢ IRK

�A(uuu) = A(uuu)
�
�A(uuu) ?  Yes, if                 differentiable at 

Formal generalizations to dissipative systems                                   with time-periodic attractors
(Majda & Wang 2010,  Gershgorin & Majda  2009)

(Hairer & Majda 2010)

p�eq(vvv) = peq(vvv) + �p(vvv)� = 0

� ! � + ��



 Essentials of FDT (e.g., Majda,  Abramov, Grote 2005)

�A(uuu) = A(uuu�)�A(uuu) =

Z t

t0

R(t� s)�f(s)ds

R(⌧) = AAA(uuu(⌧))B(uuu(0))

B(uuu(⌧)) = �div(hhhpeq)

peq

can be computed through a correlation function in the unperturbed attractorR(⌧)

FDTvvv

vvv

  Expected change of            on a subsetAAA(uuu) uuu 2 IRN ⇢ IRK

�A(uuu) = A(uuu)
�
�A(uuu)



�A(uuu) = A(uuu�)�A(uuu) =

Z t

t0

R(t� s)�f(s)ds

R(⌧) = AAA(uuu(⌧))B(uuu(0))

B(uuu(⌧)) = �div(hhhpeq)

peq

Can be generalized to dissipative systems                                      

vvv

vvv

  Quasi-Gaussian FDT

RG
A(⌧) = AAA(uuu(⌧))BG(uuu(0))

BG(uuu) = �
div(hhhpGeq)

pGeq
vvv

 Approximate FDT algorithms

RA(t) · �xxx0=

Z t

t0

RA(t� s)·�xxx0
�̃(s)ds = �A(uuu)

  Kicked response 

A(uuu�x

x

x

o)�A(uuu)

  Blended response  FDT  Abramov & Majda,   Nonlinearity 2007                                                     

�A(uuu) = A(uuu)
�
�A(uuu)



Derive the linear response by monitoring relaxation 
from the “kick” 

Perturb the initial data for the perfect/imperfect models in the direction       
in a statistical fashion generating solutions of the unperturbed perfect and 
imperfect models with perturbed initial conditions

  Kicked response  FDT

 Practical algorithms for computing the linear response via FDT

@tp = LFP p

LFP peq = 0
p
���
t=t0

= peq(vvv + �uuu0)

v̇vv� = fff(vvv�) + �uuu0�̃(t) + �(vvv�)Ẇ (t)

�fff = �uuu0 �̃(t)

�x

x

x

0

�x

x

x

0

�x

x

x

0

�x

x

x

0

RA(t) · �xxx0=

Z t

t0

RA(t� s)·�xxx0
�̃(s)ds = �A(uuu)= A(uuu�)�A(uuu)



 FDT & time-periodic attractors



  Essence of fluctuation-dissipation theorem 
                                          for forced dissipative systems  

⇡�
t = ⇡eq + �⇡̃t

FFF �
t = FFF �

t + �F̃FFPerturbation: 

Marginal density: 

� �

Changes in the statistical moments ... 



  Essence of fluctuation-dissipation theorem 
                                          for forced dissipative systems  

Changes in the statistical moments can be computed via  
appropriate correlation functions in the unperturbed equilibrium 



  Poor sensitivity for Non-Gaussian tracer via qG-FDT

Quasi-Gaussian FDT

 Good skill from qG-FDT for the mean 

 No skill from qG-FDT for the variance 

non-Gaussian tracer 

�A(uuu) =

Z t

t0

RG
A(t� s)�f(s)ds

RG
A(⌧) = AAA(uuu(⌧))BG(uuu(0)) BG(uuu) = �

div(hhhpGeq)

pGeq

Expected response of a functional A to forcing perturbation 
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Majda & Gershgorin,  PNAS  2011  



  High prediction skill for the tracer statistics via kicked  FDT

Kicked-response  FDT
non-Gaussian tracer 

 High predictive skill from 
kicked-FDT for the mean & 
variance 

estimated from monitoring the system relaxation to equilibrium after a kick 

�A(uuu) =

Z t

t0

Rkck
A (t� s)�f(s)ds

Rkck
A
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