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Abstract

Abstract: Three measures of complexities are computed for SIXPAR model on a MOPEX
basin data set. One of the measures is based on an approximation of marginal likelihood
function, while the other is based on measuring stability of system representation by SIX-
PAR. Results suggest that the 2 measures are equivalent, indicating that if the Bayesian
measure is a valid measure of model complexity then the other is a valid measures of com-
plexity as well. Results further suggest that SIXPAR complexity varies with the magnitude of
its parameters.

1. Definitions

WE define the set of observations of a variable of prediction interest such as streamflow
by a vector ~y0 = {y0(1), y0(2), . . . , y0(N)}. Here N is the data size or the number of ob-

servations. It represents one realization of observations. Similarly, let forcing be represented
by ~x = (x1, x2, . . . , xN ) where x1 may not be univariate, though assumed here to be univari-
ate for simplicity. Let a model be represented by a parameter set α that for given forcing ~x
simulates ~y(~x;α) = (y(1, ~x;α), y(2, ~x;α), .., y(N,~x;α)).
Let ‖.‖ measure the magnitude of vectors based on the metric used. For example ‖ ~A‖ =
d(~p2, ~o2), where d(~p2, ~o2) measures the closeness between two points in the model output
space, for example mean of absolute values or any other measure that satisfies the condi-
tions of being a metric.
We define a model structure ∧ is defined as a collection of models parameterised by αs, i.e.
∧ = (α1, α2, ..).

2. SIXPAR model and the data set

THE SIXPAR model structure, which is a conceptual simplification of the SAC-SMA (Sacra-
mento Soil Moisture Accounting Model) with one upper and lower zone, ignores evapo-

ration and the concept of tension water zones but retains the complex conceptualization of
percolation. These models are run at daily time steps using input forcing from a selected
MOPEX basin in this study.
The parameter ranges used in the study are given in the table below.

Table 1: SIXPAR model structure parameter ranges used in the study. ”HR” range contains
high recession parameter values obtained from the ”Reference” range. ”LR” range similarly
contains low recession parameter values from the ”Reference” range. ”HS/LR” has the same
recession values as ”LR” but it now has larger range for storage capacities than those in the
”Reference” range.

Parameter ”Reference” ”HR” ”LR” ”HS/LR”
UM [mm] 0-50 0-50 0-50 1-300
UK [day−1] 0-1 0.75-1.00 0.10-0.25 0.10-0.25
BM [mm] 0-50 0-50 0-50 1-3000
BK [day−1] 0-1 0.75-1.00 0.001-0.005 0.001-0.005
Z[-] 0-1 1-250 1-250 1-250
X[-] 0-10 1-5 1-5 1-5

3. Bayesian measure of model complexity
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Here, |H̃−1α∗ | is the determinant of the inverse of the Hessian of log
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α∗. The Hessian is a matrix whose element in ith row and jth column is,
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The approximation demonstrates that marginal likelihood of a model structure ∧ is composed
of maximum log-likelihood value and inverse of the Hessian evaluated at the optimum. The
larger the determinant of the inverse of Hessian for a given value of log-likelihood value, the
smaller is the marginal likelihood of a model structure. This implies that a larger determinant
(of Hessian inverse) value makes a model structure less likely to represent the underlying
system for a given level of maximum log-likelihood value. This is synonymous to the notion of
model complexity presented in this paper in the sense that there is a trade off between model
complexity and model performance (log-likelihood). The Hessian measures the curvature of
the likelihood function around its maximum value. Thus, the Bayesian notion of model com-
plexity favors those models whose log-likelihood function is more sensitive to perturbations
in parameters.
We here assume that a likelihood function is a function of η = ‖~y0 − ~y(~x;α)‖. That is,
`(η) = `(~y0, ~x;α). Thus we assume that the likelihood function is based on the similar-
ity of a simulated response to observed time series. Assuming mean of absolute values

as the metric, ‖~y0 − ~y(~x;α)‖ is Mean Absolute Error (or mean of absolute residuals), i.e.
η =

∑N
t=1
|y0(t)−y(t,~x;α)|

N . Then it can be shown that when evaluated at the optimum,
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This shows that the Hessian depends on the relative curvature of the likelihood function (ratio
of second derivative of the likelihood function and the likelihood value at the optimum) and
the sensitivity of model output to perturbations in parameters. The latter is specific to the
model and the parameter magnitudes used. For SIXPAR model, parameters corresponding
to storage capacities and recession coefficients are used (UM, UK, BM and BK; see Table
1).
Since the Bayesian measure of complexity is the log determinant of Hessian inverse
(log(|H̃−1α∗ |)), we define our measure of complexity as log(1/κH), where κH is the condition
number of the matrix H with elements Hi,j =

∑N
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∂y(t,~x;α)
∂αi

∑N
t=1

∂y(t,~x;α)
∂αj

. We here note that
1/κH is similar to taking the determinant of the inverse of H. Such a measure thus only con-
siders the contribution of model parameter magnitudes to model complexity and excludes
1
`(η)

∂2`(η)
∂η2

.

4. Complexity measure based on relative condition number (stability of system
representation by SIXPAR)

CONSIDER two data sets of same size N that have been sampled from the same underlying
distribution. Model parameters that are selected on the first data set by an ill-conditioned

model selection problem will be different from model parameters that are selected on the
second data set. A more ill-conditioned model selection problem will select models with
more diverse parameters. The inverse of condition number that quantifies how much varia-
tion in parameters is possible per unit perturbation in model response is therefore used as a
corresponding measure of model complexity.
We use relative condition number, κ (y(~x;α)) that quantifies the sensitivity of a hydrological
model y(α) with respect to its parameters. The model that is used is SIXPAR and sensitivities
to upper zone (UM) and lower zone storage (BM) capacities and corresponding recession co-
efficients (UK and BK) are considered (see Table 1). For a given parameter value α, κ (y(α))
is defined as the maximum fractional change in model output to any fractional change in α.
That is,

κ (y(α)) = lim
ε→0+

max
‖δα‖≤ε

‖~y (~x;α + δα)− ~y (~x;α) ‖
‖~y (~x;α) ‖

‖α‖
‖δα‖

(2)

The relative condition number is computed for ε = 0.01. Perturbations ‖δα‖ are considered in
the 4 parameters one at a time. Therefore, for a given SIXPAR parameter value 4 different
‖δα‖ are generated by perturbing UM, BM, UK and BK parameters by 0.01 one at a time. The
metric used is mean of absolute values, i.e. ‖~y (~x;α) ‖ =

∑N
t=1
|y(t,~x;α0)|

N and ‖α‖ =
∑J
j=1
|αj|
J ,

where J is the number of parameters and αj is the jth parameter.
The measure of complexity based on this condition number is then given by log (1/κ(y(~x;α))),
which then measures the stability of system representation by SIXPAR.

5. Results

Figure 1: Measures of complexity for SIXPAR based on condition numbers for ’ME’ basin
for various parameter ranges as described in table 1. These quantify how ill conditioned
corresponding model selection problems are. κ (y(α)) is the relative condition number of a
model (y(α) = SIXPAR) with respect to its parameters (αj = storage capacities and recession
parameters), while κH is the condition number of a matrix H whose elements Hi,j are given

by
∑N
t=1

∂y(t,~x;α)
∂αi

∑N
t=1

∂y(t,~x;α)
∂αj

.
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IF the Bayesian measure is a valid measure of model complexity then the measure based on
relative condition number is a valid measures of complexity as well. Both the measures of

complexity suggest that complexity increases with higher values of recession coefficients and
lower values of storage capacities, indicating that model complexity depends on parameter
magnitudes as well.
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