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Problem Statement

Transfer entropy is advancing our ability to quantitatively resolve causal mechanisms (e.g., feedbacks and forcings) through which environ-
mental variables interact, based on data time series (Ruddell and Kumar, 2009). However, earth systems are inherently spatial. Here we
showcase the Environmental System Dynamics Laboratory’s early and ongoing efforts to unlock the potential of entropy-based methods to
, Process connectivity), the critical spatial scales and pathways along which informa-

resolve spatially explicit earth system processes
tion and mass travels (i.e., functional connectivity), and the implications of the spatial flow of information for system behavior. We show
how entropy-based approaches may be used with different types of datasets, including data that are spatially dense but temporally sparse

(e.g., remote sensing data), spatially and temporally dense but irregularly spaced (e.g., sensor network data), spatially and temporally

sparse (e.g., environmental sampling data), and gridded model output data. Analysis strategies and limitations may vary depending on the
existence of directional informaiton flow (e.g., water) and discrete spatial sources of perturbations to the system.
Data Type 1: Spatially Dense, Temporally Sparse \
(Remote sensing data)

Many remote sensing datasets fall into this category. Depending on the motivating scientific question, researchers attempting to perform
causal inference may take several approaches, which we detail here and in the next section.

Space-for-time substitution

If the dominant process of interest is expected to occur uniformly over the patch scale (i.e., in a way that is not spatially explicit at the
sub-patch scale), information from patches of a particular type can be aggregated to develop the joint and marginal probability distributions
from which transfer entropy is computed. Appropriate questions are restricted to those of causal inference between variables at the patch
scale at the interval(s) between images.

Example 1:
How does the geomorphic role of different vegetation communities vary on a growing river delta? In which communities does vegetation serve
as a dominant influence on topography vs. vice-versa? In which communities can a bi-directional feedback be resolved, and how strong are
the relationships?

Age of subaerial land on Wax
Lake Delta, Louisiana, USA (Tur-
nipseed et al, 2014)

T > 2) =

Al tree pixels

Extraction of biomass and bed elevation from lidar within tree vegetation community

Example 2: Spatially explicit i transfers with

In the case of clear directionality (such s a river), spatial lags (£) in the parallel or per-
pendicular direction can substitute for temporal lags () in the computation of transfer en-
tropy. Two types of questions are readily addressable:

1) What are crtical spatial scales of influence? (Example: Over what downstrea distanc-
g., in river propagate?)
P(WelWe-s, Weg)
P IW, )

T(Wapstream = W) = Z P(We, Wy—1, Wy ) log
*

2) What are critical processes governing directional systems, and the spatial scales over
which they occur? (Example: Does riparian biomass/lateral valley slope, etc. play a gov-
erning role in channel characteristics? What is the spatial scale of that lateral connectivity?
P (We|Wy—1, Br)

P(Wel, We—1)

Green lidar imagery showing high-resolution river
bathymetry and floodplain elevation in the vicinity of a
tributary confiuence. Here we have superimposed
sects along which river width would be
calculated and discretized adjacent portions o the
floodplain for the computation of biomass (or slope).
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Data Type 2: Spatially and Temporally Dense, Irregularly Spaced
(Sensor network data)

Spatially and temporally dense data offer researchers the ultimate flexibility. Transfer entropies may be computed between all pairs of variables, at all
points in space, at all relevant time lags. Key challenges lie in the post-processing of the resulting highly dimensional process networks. The challenge
may be addressed at the front end, by using knowledge of the system and driving questions to select which transfer entropy calculations are likely to
yield the greatest insight, or at the back end, through complex network or machine learning approaches. Below we show how spatial networks of
transfer entropy are likely to yield new insight into pressing questions in earth systems science, and how these challenges will be addressed.

Example
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Create these maps for all recipient points.

How do these scales of feedback and forcing

h fi ? x
change from forested to deforested areas: ITCZ influence
Here, critical scales of information transfer
are anchored to points in geographic space
of interest.

o
represents modal/
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significant timescales of infor-
mation transfer.

Transparency overlay
represents strength
of information
transfer.

Modified transfer entropy calculations:

R.(|R,
W T(Rey »R) =Y PRt Rt Ry log 255!
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(2) T(NDVL, »R.) = Zp(R.“,NDVI. g NDV <) log: T

Example application 2: How have land use changes impacted hydrologic feedbacks in the Sahel?

Climate models perform notoriously poorly in representing land-atmosphere interactions over the African conti-
nent. In part due to a lack of data, scientists have a poor understanding of hydrologic feedbacks in the vicinity of £
the Sahel. Especially perplexing is the Sahelian Paradox, which describes decadal-scale increases in streamflow in
some basins despite deepening drough conditions. In this study, we analyze for the first time a multi-source data- (3
set, consisting of rain gauge network data, hand-classified land use data, and remote sensing data to resolve
feedbacks, forcings, and their spatial scale. We test the hypothesis that changes in water balance partitioning due
ultimately to land-use change are ultimately responsible for increased streamflow in the Sahelian Paradox. As
shown in the figures below, process networks will be derived based on spatially averaged data (to delineate critical
variables) and spatially explicit data (to delineate the spatial scales over which water recycling occurs and over

Sirba basi 5111 )
which human influence changes the hydrologic cycle). 2 basin sty area

Sink variable: Baseflow Sink variable: Runoff

Spatially-aggregated 0-lag and maximum transfer entro-
pies to baseflow and runoff in the Sirba basin. One sur-
prising finding was the long time lags over which runoff
appears to influence baseflow.
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Transfer entropies between spatially distributed precipita-
tion and runoff. Results likely illustrate the spatial coher-
ence of rain events in this basin. Teasing apart critical spa-
tial scales over which precipitation influences runoff will
likely require formulating transfer entropy in a form similar
to (2) above, conditioning probability distributions with
respect to point-scale local precipitation at the most signif-
icant time lag (here, 0)

ing highly dimensional information.
Example 1: Sand pile model

sand to each of the four neighbors.
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Example 2: Turbulent flow
Direct numerical simulations of the Navier-Stokes equations provide state-of-the-art resolution of fluival dynamics.

Incompressﬂ)\e Navier-Stokes:

Data Type 3: Model Generated (Proof-of-concept)

In adapting transfer entropy concepts to spatially explicit systems, it is helpful to have proof-of-concept examples that show 1) That
transfer entropy is able to resolve spatially explicit feedbacks, and 2) Transfer entropy can capture key properties of the system. Work-
ing with gridded spatially- and temporally-extensive datasets from models will also aid in the development of strategies for post process-

grams

Grains dropped at origin. See below
for explanation of transects

Grains dropped in 25125 pirel
around origin.

Written as vorticity equation:

Image source: hitp://www.win.tue.nl/smarter/index php?page=werner

Vorticity field of a turbulent flow. Transects are paths with identical spatia lags, which in this data snapshot, would have distincty different
contributions to the joint and conditional probability distributions that comprise transfer entropy, due to the spatial nonuniformity of perturbations.

Rules: Drop grains of sand onto model domain. If there are four arains of sand on any cell, the pile topples and distributes one grain of

box

a
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Key behavior: Both systems exhibit @ POWEr 10w e oo
law distribution of critical length scales when
their behavior is fully developed. ]

sant ke moel

-
Turbulent energy
fcascade
(Saddoughi and Veer-
Favall, JFM, 1994)

lope = -5/3

Hypotheses:

be producers of information.

depends on states of all intervening pixels.
« Critical spatial scales of information transfer

tion occurs.

cality and the turbulent energy cascade.
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Origin drop.

Simpified computational 2
domain, showing pathway aiong H
which information transfer is 3
computed. Transfer entropy is £
based on the number of grains g
ina cel, conditioned by the
number of grains in that cell at
the previous time step

the origin.

. Random drop

Gross information pmﬂuc\lon for each cell. Cell 1is
in.

stream for Fr<1.

« Pixels on which sand grains are dropped should
* Maximum information transfer as a function of
spatial lag will decline more steeply than the pow-
er-law function for event size (as whether a top-
pling at the “source” pixel influences a “sink” pixel
should not be dependent on where the perturba-
 There should be an information analog for criti-

« In shear flow, information should propagate up-

Preliminary test: Drop 10,000 grains at origin vs. drop 10,000 grains randomly in 5 x 5 box around origin

Behavior of cell-to-cell ransfer entropy over
length scale. For drops at the origin, the behavior
is in accordance with a power law. Transfer entro-
py deciines significantly when the source of infor-
mation s spatially variable.

properties of the system?

previous time step, or both?

of variables?

 How do point-scale perturbations (e.g., vortices, sand grains),

unique to “i
= What variables to use in transfer entropy calculations to reveal critical spatial scales of information transfer? State change or
sandpile height? Gross grains lost and gained? Vorticity or velocity? What are the implications of variable choice on information

space”:

« For each of the variables above, how to condition the probabilities in the computation of transfer entropy? By adjacent cell,

* How to compute significance level? By shuffling values in time, space, or both? How is the choice dependent upon the choice

on a spatially system, impact the

ability to inductively determine system properties? The challenge is that perturbations propagate directionally and in a spatially
heterogenous manner. The probability distributions that comprise transfer entropy will be different depending on where they
are anchored and the directions along which they are computed (see transects drawn within the figures). Is the solution spatial
averaging? Identification of source nodes and key directions, and computation of probability distributions anchored to those
urces and along those directions?
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Data Type 4: Spatially and Temporally Sparse (Sampling data)

With spatially and temporally sparse data, transfer entropy techniques can not be used to resolve functional or process connectivity (Ruddell and
Kumar, 2009). However, a conceptually analogous strategy based on tracking the propagation of perturbations through a system, can still be
used.

Example: Tracing the impact of flow releases on solute connectivity in the Everglades
Part of Everglades restoration involves removal of manmade barriers to flow. As a pilot test of that management activity, flows and solute chemis-
try were monitored over an experimental landscape that experienced controlled flow releases in 2013 and 2014, shortly after gaps were
breached in the surrounding levees. We modeled water quality at each sampled station as a linear combination of a site effect and time effect
and computed residuals. The residuals (i.e., water quality signal perturbations) were then modeled with stepwise regression as a function of re-
siduals and raw variable values at surrounding sites. Significant connections formed a link in the spatial functional connectivity network. By plot-
ting the networks for all monitored solutes simultaneously, it is apparent that the flow releases substantially changed functional connectivity
pathways in the Everglades landscape.

rlnterpreting Process and Functional Connectivity Networks )

Spatial transfer entropy networks are highly dimensional and pose challenges for interpretation, highlighting a need for network characterization
techniques. Information entropy provides several tools useful for characterizing and interpreting networks.

Example: How does a change in process or functional connectivity network structure impact the probable resilience of the
system?

We asked this question for the water quality functional connectivity networks resolved above. Systems that feature a range of fundamental, dis-
crete scales and diversity of functional entities within and across scales are typically viewed s having a high potential for resilience. This poten-
tial can be quantified by:

1) Determining the size of network components (connected portions of the netwcrk node connected to other nodes) and how components of
each size are distributed among solutes, computed using Shannon entropy stal

2) Calculating the capacity and redundancy of the weighted network (U\anowlcz '1979). Capacity refers to the evenness with which flows in a
network visit the nodes. Redundancy refers to the multiplity and evenness of flow paths out of each node once a solute has reached the node.

Resolved!
network

c 2 QnlogQ, Capacity. Q, represents the proportion of total network flows visiting node n.

n=1 |
NN i :
B 1 ¢ I ik Redundancy. g, represents the proportion of |
=z 9ixQ;log SV gw0y)| flows passing through node j that go to node k. :
k== JucCn H
PDF of joint Shannon entropy of shuffled sur-
28 ®Nofireor 6 jate networks with same number of connec-
flood i mNofireorflood M PostGap Error bars tions as resolved network.
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15 8 By all metrics examined, water
g quality networks seemed to mar-
5 ginally increase in their capacity
: g, for resilience following restoration
£ of flow in the Everglades.
os 21
& o Acrossscale. Within-scale 1 Within-scale 2 Within-scale 3 Joint
component
Capacity and redundancy of Ever- size

glades water quality networks, pre-

‘Shannon entropy within and across network components consisting of 1, 2, and 3 nodes.
and post-flow.

Pre-flow-release conditions are in brown; post flow in blue.
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