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1. Introduction  

2. MO-ASMO: Surrogate-based Optimization 

Motivation 
 Parameter calibration can significantly improve the performance of models. 
 Large complex geophysical models are expensive to run. 
    (distributed hydrological models, land surface models, weather/climate models, etc.) 
 Calibration of multi-physical processes models must be multi-objective. 
Need to simultaneously improve the performance of multiple processes. 
Multi-objective optimization and MCMC cost a huge (105-106) number of model evaluations. 
How to reduce the number of model evaluations for Multi-objective optimization and MCMC? 

Research highlights 
 Surrogate-based multi-objective optimization (MO-ASMO). 
    Multi-Objective – Adaptive Surrogate Modelling based Optimization  
 Surrogate-based MCMC (MC-ASMO). 
    Markov-Chain – Adaptive Surrogate Modelling based Optimization  
Novel adaptive sampling approaches for surrogate model. 
 Special technology for simultaneously improving all objectives. 
Demonstrate the effectiveness and efficiency of MO-ASMO/MC-ASMO with test problems.  
Applied to a land surface model CoLM. 

Pareto frontier:  
cannot improve one objective 
without degrading another. 

Region 1: Non-dominated region of the reference point. 
                  Superior to the reference point. 
Region 2: Non-dominated region. Dominated by f1 only 
Region 3: Non-dominated region. Dominated by f2 only 
Region 4: Dominated region of the reference point.  
                  Inferior to the reference point. 

Pareto rank 1 
Pareto rank 2 
Pareto rank 3 

Performance metrics  
for multi-objective optimization: 
Convergence: Fitness to the true Pareto frontier. 
Diversity: Solutions are far away from each 
other and uniformly cover the Pareto frontier. 
(for 2D problem only) 

Non-dominated sorting: 
First sort with Pareto rank 
Then sort with the crowding distance. i.e. 

P1>P2>P3. Larger distance means better diversity. 
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Crowding distance: 
Sum of the edge 
length of the cuboid.  
D = d1 + d2 

Select the optimal 
points with largest 
crowding distance as 
the most 
representative points. 

Flowchart of MO-ASMO 

Demonstrating the effectiveness and efficiency of MO-ASMO with ZDT test problems 
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Simultaneously improve all objectives with weighted crowding distance  

Definition of weighted crowding distance 

Comparing with the default 
parameterization 
 
O1: better f1, worse  f2 
O2: better f2, worse  f1 
 
We want to find the green region,  
simultaneously get better f1 and f2. 

3. MC-ASMO: Surrogate-based MCMC 
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Flowchart of MC-ASMO Two criteria for stratified adaptive sampling: 
1) Similarity to the posterior from surrogate model 
2) Keep far always from the evaluated points 

 

Two steps of stratified adaptive sampling: 
1) Sort the posterior samples and divide into h bins 

according to quantiles. 
2) In each bin, select one point with largest distance to its 

evaluated neighbor. 

Posterior distribution of banana function obtained by MC-ASMO 
(with only 1,000 model evaluations) 

4. Case study 
Model: Common Land Model (CoLM) 
              By Yongjiu Dai, GCESS, BNU 
 
Study area: A’rou station 
                     Heihe river basin, China 
 
Date: 2008-01-01 to 2009-12-31 
 
40 adjustable parameters, screened out 12 
important parameters to tune. 
6 objectives functions. Study area 

Calibrate CoLM with WMO-ASMO (500 model evaluations), and with WMC-ASMO (1,000 model evaluations) 
[WMO-ASMO: MO-ASMO with weighted crowding distance; WMC-ASMO: MC-ASMO with weighted dominance function] 

Pareto optimal points obtained by WMO-ASMO, posterior distribution obtained by WMC-ASMO, as well as 
optimal point obtained by SCE-UA, ASMO, and the default parameterization. 

Posterior distribution of objective functions obtained by WMO-ASMO with 500 model evaluations, 
and by WMC-ASMO with 1,000 model evaluations. 
Simultaneously improving all of the objectives with a small number of model evaluations. 

5. Conclusions 
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 Comparing MO-ASMO vs NSGA-II, MC-ASMO vs DRAM, MO-ASMO and MC-ASMO can 
reduce the number of model evaluations from 105 to 102. 

MO-ASMO and MC-ASMO can simultaneously improve multiple objectives with the 
information of default parameter. 

MC-ASMO can draw the posterior distribution like classical MCMC approaches. 
MO-ASMO and MC-ASMO are compatible with various kinds of initial sampling, surrogate 

modelling, embedded multi-objective optimization and MCMC methods. 
Optimal use of MO-ASMO and MC-ASMO have also been discussed in the original papers. 
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