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Considering Geological Modeling as an Inference Step

In order to perform the analysis of uncertainty, we need to embed the 3D geological 
modeling process into a probabilistic framework. The foundation of the method, here 
presented, consists of treating the generation of a geological model as a deterministic  
step within a larger Bayesian network.  This consideration enables the use of complex  
data types or hypotheses that otherwise would not be possible to relate with the prior 
parameters. To create the models, we use here a cokriging interpolation of an implicit po-
tential-�eld method, implemented in software package GeoModeller. 

We follow in this work a novel approach to consider 3-D structural geological modelling 
not as a purely deterministic step, but as an inference step where we aim to consider all 
available geological and geophysical information. In order to achieve this aim, we devel-
op a Bayesian inversion scheme in the typical way (Eq. 1):

From a view point of geological modeling, we can interpret the di�erent terms as follows:

• Priors,            , de�ne the belief for the multidimensional parametric space that encapsu-
lates all the information of the system. 

• Likelihood functions,                   ,  reduce model uncertainties by constraining it with obser-
vations. Furthermore, this step enables us to identify parameter correlations in the 
model. This leads to a reduction of uncertainty, since the uncertainty space gets reduced. 
However, contradictory observation may lead to an increase of the overall information 
entropy of the system.

• The step of choosing a suitable model,          , quickly increases in complexity in typical ge-
ological modeling applications. The use of interpolation methods in order to be able to 
describe certain data can be framed in a non-parametrical model.  Furthermore, geologi-
cal data used for interpolation is often based on empirical expert opinion.  On top of this, 
most of the observations in geology proceed from various di�erent sources so that more 
than one forward model must be chosen at the same time. Nevertheless, models are only 
mathematical tools to describe data based on the chosen priors and therefore do not 
contribute to change the information of the system.

We test these considerations here in an application to a geological model of the Sand-
stone Greenstone Belt in the Yilgarn Craton, Australia. We �rst consider geological pa-
rameters as independent random variables and generate stochastic realizations of input 
data sets, which are then used in the forward modeling step to create a geological model 
realization (Wellmann et al., 2010). We then discretize the resulting continuous model on 
a discrete mesh structure and calculate probabilities for each speci�c geological layer in 
a given cell, and �nally the information entropy in each cell as a summary measure of un-
certainty. The information entropy if all cells with entropy values > 0 is presented in Fig. 
1A.

In a next step, we now add information in the form of geologically motivated likelihood 
functions. These functions can partly be applied as constraints on the input data set (e.g. 
as constraints on the spatial di�erence between two geological surface contact points 
that de�ne a layer thickness). In other cases, these constraints require a full forward mod-
eling of the geological model, for example when using observations of a geological unit 
at a de�ned location. It is important to point out here that these types of constraints can 
not be used directly in the interpolation step, and that they are therefore incorporated in 
the form of likelihood functions. With these considerations, the remaining subsurface 
uncertainties are clearly reduced (Fig. 2B).

Finally, we use an additional type of information that is often available in these types of 
geological environments: potential-�eld measurements of gravitational acceleration. In 
order to obtain a likelihood function, we couple the geological modeling step with a 
model of gravity on the basis of rock densities assigned to each geological unit. The cal-
culated gravity �eld is then compared to a gravity measurement. This additional type of 
information reduces the resulting uncertainties even further (Fig. 3C).

Application to a geological model of a Greenstone Belt

Analysis of information correlation and uncertainty reduction

Information entropy as a measure of geological uncertainty

The logical next step from quantifying and visualizing uncertainties is the question where ad-
ditional information would reduce uncertainties. To address this question, we apply the con-
cept of multivariate conditional entropy: we want to know the remaining amount of uncer-
tainty at a speci�c location, given the information (observations) at multiple other locations. 
We tested this measure before on simple systems with the expected result that spatial corre-
lations lead to larger reductions of uncertainty when measurements are taken. 
Next steps will therefore be to apply this concept to the presented Greenstone model. Fur-
thermore, we attempt to characterize the entire uncertainty in the model space calculating 
the joint entropy of all cells. This step is computationally demanding, but could provide a way 
to consider all uncertainties, including their correlations, in the full 3-D space of a geological 
model. 

In our work, we develop methods to characterize and analyze uncertainties related to 
the identi�cation of major geological features in the subsurface, such as structural geo-
logical elements (main boundaries between geological units, faults, folding patterns) or 
sedimentary features (channels, fans, etc.). Our knowledge about these features at a 
given location is typically limited as direct observations at depth in boreholes are rare 
and expensive. Model interpolations between these points carry furthermore many as-
sumptions (e.g. Jessell et al., 2014). We therefore investigate how uncertainties in obser-
vations and the following modeling methods propagate into the space of the geological 
model. 

We �rst consider geological parameters as independent random variables and generate 
stochastic realizations of input data sets, which are then used in the forward modeling 
step to create a geological model realization (Wellmann et al., 2010). We then discretize 
the resulting continuous model on a discrete mesh structure and calculate probabilities 
for each speci�c geological layer in a given cell, and �nally the information entropy in 
each cell as a summary measure of uncertainty (Mann, 1993; Wellmann and Regenau-
er-Lieb, 2012).
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The quanti�cation and analysis of uncertainties is important in all cases where maps and 
models of uncertain properties are the basis for further decisions. Once these uncertain-
ties are identi�ed, the logical next step is to determine how they can be reduced. Infor-
mation theory provides a framework for the analysis of spatial uncertainties when di�er-
ent subregions are considered as random variables. In the work presented here, joint en-
tropy, conditional entropy, and mutual information are applied for a detailed analysis of 
spatial uncertainty correlations. The aim is to determine (i) which areas in a spatial analy-
sis share information, and (ii) where, and by how much, additional information would 
reduce uncertainties. As an illustration, a typical geological example is evaluated: the 
case of a subsurface layer with uncertain depth, shape and thickness. Mutual information 
and multivariate conditional entropies are determined based on multiple simulated 
model realisations. Even for this simple case, the measures not only provide a clear pic-
ture of uncertainties and their correlations but also give detailed insights into the poten-
tial reduction of uncertainties at each position, given additional information at a di�erent 
location. The methods are directly applicable to other types of spatial uncertainty evalua-
tions, especially where multiple realisations of a model simulation are analysed. In sum-
mary, the application of information theoretic measures opens up the path to a better 
understanding of spatial uncertainties, and their relationship to information and prior 
knowledge, for cases where uncertain property distributions are spatially analysed and 
visualised in maps and models.
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Figure 1: Uncertainty analysis of the Greenstone Belt geological model. A), B), C), show a representative section of one stochastic model as well as the infor-
mation entropy of the model, for different observations. D) displays the initial 3D model and its prior parameters. E) describes the rejection of forward gravity
inversion models making use of a likelihood function. F) shows the difference on information entropy increasing the number of observations. 

Figure 2 A: Theoretical illustration of  information entropy variation in correlated cells. Figure 2 B: Evolution of information entropy of a model as we reduce 
uncertainty in specific regions, simulating new boreholes.
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