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Challenges for Observing and Modeling Complex
Earth Systems: Feedback, Nonlinearity, and Scale

The reductionist approach, which reduces a system
to isolated cause-effect pairs, struggles with complex THRESHOLD IN X
systems because of: |

REGIME A

REGIME B

 Feedback: cause & effect lose meaning when
processes becomes circular or self-organizing. SYSTEV
STATE

SYSTEM ENTROPY /
DISTANCE FROM
EQUILIBRIUM

* Thresholds separate qualitatively different system
states. Example: Plant Stomata close when soil
moisture is < 20%. Nonlinearity is dominant at
subdaily timescales [Baldocchi, 2001a].

SYSTEM VARIABLE X

» Scale: One scale cannot be isolated: all interact. ?

 Variability: system structure is dynamic (changing

T
in time), and can be controlled by the variability of
the system itself. Example: fish populations in lllinois @
River crash when new dams reduce flow variability - -
Stomata Transpiration Stomata Transpiration Ceases

[Koel and Sparks, 2002] SWC > 0.2, well-watered SWC < 0.2, dry

* Observation: It is difficult to observe all physical
components of the system at all relevant scales. 5



Conceptualize the Complex System as a Process Network of
Couplings between Observable and/or Modeled Subsystems

Short
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) e
FAaviaa AdiAn

A Process Network is a network of feedback Biomass
loops and the associated timescales that

depicts the magnitude and direction of flow of

information between the different subsystems.

Global Ocean and Atmosphere - Climate Scale

(and/or flow of matter, energy, etc.) , 2

. - O
Ecohydrological systems conceptualized as a \9\0@ 2
hierarchy of self-organizing subsystems 6\\“\0 S

characterized by feedback couplings at |
multiple scales [Kumar, 2007].
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Q: What is Information?



Q: What is Information?

A: Information Is the
Answer to a Question



Q: What is Information?

A: Information is the
Answer to a Question

Q: What Is our Question?



Q: What is Information?

A: Information is the
Answer to a Question
Q: What is the right Question for

dynamical systems study?
A: “What will be the Future

State of Timeseries
Variable Y(t)?”



Shannon Entropy: The fundamental
measure of uncertainty and information

p(y) is the prior probability that discrete H (Yt) _ _Z p(y) . Iog p(y)

variable Y takes state y.
yeYy

H(Y,), the Shannon Entropy, measures the

size of the question of state; this is also the P(Y)
amount of information we gain when we

learn the answer to the question.

y=4

State y Y(t)
Minimum H for 4 discrete states
y=4 H(Y) = 0 bits, no uncertainty
p(y)
y=3
y=2

. y:2 y=3 y=4

oY) i Maximum H for 4 discrete states
y H(Y) = log.(4) = 2 bits




How to Measure Information Flow?
Transfer Entropy!

« To measure directional information flow
and assess timescales of flow, we need an
asymmetric measure of information flow

« Thomas Schreiber [2000] introduces
Transfer Entropy T, conditioning
information shared by X, and Y,on Y/'s
history

PCY [ (Ve X))
T(X, >Y,,7)= pP(Y,, Y.\ X_,)l0g z
o yyz e (Y, | V1)

T measures additional information
contributed by X, across at time lag T. ‘ ‘
Entropy reduced = information produced.

By computing T across many time lags, we
can assess the time scale of directional
coupling from X; to Y,

T(Xt > Yt’T) =H (Xt—r ’Yt—l) + H (Yt ’Yt—l) —H (Yt—l) —H (Xt—r’Yt ’Yt—l) 9




Establish Statistical Significance of
Information Flow between X, and Y,

How do we decide whether T is large
enough to represent a significant flow of
information?

Compare measured T against Ts, which
Is the information flow using a time-
shuffled X, and Y, “bootstrapping”.

When T > Ts, a significant information
flow exists; X, contributes significantly to
our ability to answer questions about
future states of Y,.

Robustness of results additionally
ensured by quality control including
testing on coupled Logistic maps, and

with various N, m, and binning schemes.
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For 100 samples,
95% confidence:

a=0.05
c=1.66

Gaussian Distribution;
area under curve = 1

Significance

/ Threshold

Area a = probability of
Type | error (false positive)

| 7
H(Ts) T Ts



Is strong | due to feedback SR L
synchronization or forcing?

When two variables share a lot of
information at a given time scale, WHY?

1.Type-lll (Forcing-Dominated): T > I, so
information flow dominates shared
information.

2.Type-ll (Feedback-Dominated): T </,
shared information dominates
information flow

3.Type-l (Synchronization-Dominated): N

significant I, but not T. No flow.

Eight canonical coupling types are
formed from pairs of these couplings.

T(X, >Y,,7)

Tz(X, >Y,,7)=
K> %) (X, Yy)

T(Xe>Yy)

| X X2

Peak Process

/ Time Lag

Threshold (A)

Time Lag (dt) 11



Build a Process Network using Tz

Procedure:

Compute T between all pairs of
variables at multiple time lags

Assess statistical signficiance of each

information flow coupling
Compute Tz

Identify Characteristic Time Lag
Construct Process Network

Subsystem 1

Nodes X,Y,Z,1,J,K are
Timeseries Variables

Couplings connect Nodes to form Subsystems

™

(<]

SYSTEM V

Subsystem 2

Subsystem 3

ATz(i,)), X means Type-I coupling, bold means Type-Il coupling, otherwise Type-Ill coupling

VH
VLE
GER
NEE
GEP

Ry CH VPD PR P 0 VH VLE GER NEE GEP Ce
0.10 X X X 1.25 X 0.74 0.53 X 0.73 0.63 X
X X X X 1.16 X 1.27 2.06 X 3.38 2.76 X
X X X X 1.33 X 1.40 0.76 X 1.56 1.33 X
X X X X 0.90 X 1.54 217 X 2.93 2.46 X
1.44 X X X 0.15 9 2.30 2.77 X 2.53 1.89 X
X X X X 1.06 X 1.27 2.42 X 2.13 X X
0.62 X X X 241 X 0.09 1.16 X 0.92 0.94 X
0.43 X X X 1.93 X 0.89 0.15 X 0.90 0.84 X
X X X X 1.35 X 1.25 1.87 X 1.98 1.70 X
0.48 X X X 1.83 X 0.82 0.92 X 0.14 0.22 X
0.42 X X X 1.48 X 0.96 0.88 X 0.22 0.13 S
X X X X 0.55 X 1.75 2.16 X 221 2.36 X




Testing with Coupled

0.6

05

T for Coupled Autoregressive (500 data, 11 bins)

|

Logistic Chaotic Time-Series - ...

» Construct two synthetic time-series
with time-lag relationships

Coupled Autoregressive Noise

Coupled Logistic Maps

lagAB = 1, lagBA =7

r=3.99 [Logistic Map chaotic range]

 Characteristic Lag 7 is the first
significant local peak to occur in a
spectrum (circled in green). It is
desirable to reduce dimensionality of
the problem by picking just one .

AR, (t)=C - AR; (t —lag ,) + NormalGaussianNoise
AR; (t)=C - AR, (t —lag,) + NormalGaussianNoise

Logistic, (t) =r - Logistic, (t —lag ,) - (1 - Logistic, (t —lag ,))

Logistic, (t) = r - Logistic, (t —lag) - (L— Logistic, (t —lag ;))

S 03

02

0 12 24 36 48

Time Lag tau (timesteps)

T for Coupled Logistic (500 data, 11 bins)

2.5}
T(AB)
99% AB

1.5+

Correlation Coefficient

12 24 36 48
Time Lag tau (timesteps)

Cross-Correlation for Logistic (500 data)
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0.2 L L L
0 12 24 36 48
Lag Tau [timesteps]



Estimation Issues: How Many Bins and Data?

Plot peak-lag T vs. #Bins, #Data used.
Too few bins or data causes negative
bias in T. Too many bins does the same.
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For the coupled logistic map, 10-20 bins,
200+ samples are adequate to provide a
fully mature estimate of T.

=
I

T wax Ratior T/ log2(#Bins)
=]
b

=

500

For the y .. and NEE coupling, 500+ data
and 3-35 bins achieve a qualitatively Nurber ofbine o0 Nurnber of Tuples
accurate estimate, but one which is not 0

fully mature. We lack sufficient data and

must make a compromise.

0.2

0.3f

. .
T'(y g>NEE) T'(5 >NEE)

0.18f

A(T) 99% A(T) 99%
0.16} * TS g 0.25F *  u(Ts)
0.14}

0.21
0.12

- o1} ~ o1s|

0.08}|° -
0.06 * . o1r
o

0.041

0.05f
0.02

1 1 1 1 1 1 1 1
1 250 500 750 1000 1250 10 20 30 40 50
Number of Data, N Number of Bins, m



Periodic Noise Sensitivity (P1)
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Timeseries Value
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Proving T
(I) Toy Data

« Construct two toy datasets with
directional time-lag relationships
— Coupled Autoregressive Noise (AR)
— Coupled Logistic Maps
— lagAB=1,lagBA=7
— r=3.99 [Logistic Map chaotic range]
— C=0.5 [moderate coupling]

* AR has a positive linear correlation
at specified lags, but Logistic Map
has no linear relationship at all

0.25

0.2

AR PDF*

AR Data

1 2 3 4 5 6 7 8 9 10 11
State x (bin number)

Logistic PDF*

! ! ! ! ! ! ! ! !
10 20 30 40 50 60 70 80 90 100
Timestep

Logistic Data

1 2 3 4 5 6 7 8 9 10 11
State x (bin number)

AR, (t)=C - AR; (t —lag ,) + NormalGaussianNoise
AR; (t)=C - AR, (t —lag,) + NormalGaussianNoise

Logistic, (t) =r - Logistic, (t —lag ,) - (1— Logistic, (t —lag ,))

Logistic, (t) = r - Logistic, (t —lag;) - (L— Logistic, (t —lag ;))

! ! ! ! ! ! ! ! !
10 20 30 40 50 60 70 80 90 100
Timestep

* For 10000 data, using 11 discrete equal-interval states



Proving T
(I1) Add Periodics to Toy Data

AR With Sine SNR 1 PDF*

*Using environmental timeseries
data, all signals are dominated by
periodics (diurnal, synoptic,
seasonal oscillations) which are
noise for our purposes.

*Add sine-wave periodic “noise” to
our toy signals to test the methods

*Normalize sine wave and toy
signals to mean 0 and Standard
Deviation 1 then add them together
In proportion to a Signal-to-Noise
ratio (SNR)

*Plots to right have SNR=1

p(x)

1 2 3 4 5 6 7 8 9 0 11
State x (bin number)

Logistic With Sine SNR 1 PDF*

PeriodicData = (ToyData - SNR) + SineWave

o

Wk

AR With Sine SNR 1 Data

Logistic With Sine SNR 1 Data

|

1 1
30 40 5 70 80 90 100
eeeeee

* For 10000 data, using 11 discrete equal-interval states



Proving T
(11) Inter-Scalar Relationships

« Use T to resolve asymmetric i o
information flow between scales W

« Test using reformulated Coupled \/
Logistic Map, where values in Y £ 04
are mapped based on the mean of

the previous r number of timesteps
in X (X Is transformed using a of

Source X Sink Y

Value

mOV|ng average Of Iength r) o 10 2 30 40 5 8 70 8 9 100

* Plotting T against the source (X)
and sink (Y) process scale, this
method identifies a peak process
scale of the coupling from X to Y at
(rX=6,ry=1)

T [bits]

Xt (r) — lu(xt+w : Xt+w+r—1)




What makes these statistics different?

« Compared with correlations, etc., Information Flow resolves
nonlinear and discrete relationships.

* Metrics are based on probability theory, so the results are directly
related to predictability and uncertainty.

T is asymmetric and conditioned on auto-information so it can
distinguish one-way relationships from two-way relationships; in
other words it can distinguish two-way feedback-based
synchronization of two subsystems from one-way forcing of one
subsystem by the other.

« By distinguishing synchronization from forcing relationships and
Identifying the time and space scales of these couplings, it is
possible to logically delineate a hierarchy of physical/functional
subsystems that share the same types couplings with the system.

 |nformation is conserved on the Process Network; this enables the
calculation of system-average properties and the sensitivity of the
system as a whole to changes in specific subsystems.

19



Cloud
Fraction
Cr

Carbon Fluxes

Example Experimental

GER — GEP = NEE Radiation Ra

Framework ik - o

Oa

Natural Laboratory / Observatory Concept: an Vapor
uncontrolled experiment consisting of many passive _ Pressure
observation and data collection in the natural world. Seneble and e il
VPD
TH VLE
FLUXNET Network: a global flux tower network T T I

collecting meteorological, hydrological, and
environmental data, including carbon, water, and
energy fluxes on the land surface [Baldocchi, 2001Db].

Soil Temperature | O

Soil Water Content

Timeseries Dataset*: several timeseries variables
representing the most important ecohydrological
processes are collected at eight North American
FLUXNET sites, at a 30-minute averaging resolution,
for the years 1998-2006. The Level-4 (L4) gap filled,
guality controlled product is the best available product
[Reichstein et al., 2005]

*Data is preprocessed into a periodic anomaly, to
emphasize change and filter out periodic cycles at
scales greater than the subdaily (>24 hours).




D t July 2003 y - and NEE Data Before and After Taking
a a Anomaly: Bondville, lllinois Ecohydrological System

500 I I I I I I

4
; i :
: e i i fis
i i H ; Y
i i i i Y
i it L i ] ¥ P
i g R H 1 Hoo
i it
# ' i . i
i
afl l\/\/\

LE [W m-2]

By focusing on perturbations rather than

the scalar magnitude of timeseries data, we

can examine at the coupling and feedback

that is embedded within the solar radiation Original Data
cycle, rather than the cycle itself. — 5-day Periodic Anomaly

_ | | | | | | |
5005 6 7 8 9 10 11 12

21

Day in July 2003 [30 min timestep]



Auto-| for July 2003

SWC, Resp, Tsaoll, Tair,
VPD show strong self-
results and slow decay
with strong self-1 to and
past 24 hours... a
synoptic-scale signature

Precip, Cloud, and H
show very weak | results,
with little | past 6 hours...
and no diurnal cycle

Rg, LE, NEE show strong
diurnal cycle signatures,
decaying by 6 hours but
echoing at 12 and 24
hours. Interestingly, H
does not do this.

I [bits]

—©—Rg
—H—Ta

—*—VPD

Tsoil

—+— Precip
SWC
—0—H
LE

Resp
—%— NEE

—<— Cloud




Coupling between Latent Heat Flux

and Net Ecosystem Exchange

<30 min bidirectional feedback

Timescale corresponds to that
known to control variance in
turbulent canopy processes
[Baldocchi et al. 2001].

y.e and NEE control each other,
achieving a self-organized
dynamic equilibrium via
feedback at turbulent timescales

—NEE >y _ — 7 _ > NEE

& A
.

lllllllllll

[]
llllll

'''''
............

6

Time Lag [h]

12

18



Coupling between Latent Heat Flux
and Precipitation

2 to 16 hour feedback

mechanism of moisture
recycling in the ABL

NEE coupled to LE, so NEE
indirectly controls ABL moisture
recycling process

Individual plants’ photosynthetic
processes combine to control ABL
on aregional scale

Tz=T/1 ('=1%)

Time Lag [h]



Tz

Canonical
Couplings
lllinois,

July 2003
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WATER. RESOURCES RESEARCH, VOL. 45, W03419, do:

Example: Characterizing &

Article

" Ecohydrologic process networks:
drought as a change in e
Benjamin L. Ruddell' and Praveen Kumar'

observed Iinformation e et i
feedback (in Illinols)

6-month SPI through the end of July 2003

Using the Bondville FLUXNET site;
a corn-soybean ecosystem

. +2.0 and above (extremely wet)
] +1.50 to +1.99 (very wet)

[] +1.0 to +1.49 (moderately wet)
I:I -0.99 to +0.99 (near normal)
[] -1.00to -1.49 (moderately dry)

Standardized Precipitation Index
http://www.drought.unl.edu/

] -1.50 to -1.99 (severely dry) 6
Copyright © 2005 National Drought Mitigation Center B -2.0 and less (extremely dry)



. (Healthy)
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T Synoptic
@ Subsystem
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0\\\\ ( »~ Turbulent ‘:
$ ' Subsystem ,¢
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1L, alf jag

OF

Synoptic: Type-I
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. (Drought)
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/ — 3 /
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— S | .-

Moisture-Based
Regional Feedback
Coupling Breaks Down

0;

Synoptic: Type-I

27

Thin Arrows: Type-II coupling
Thick Arrows: Type-lll coupling




Computing Information Production and
Shannon Entropy of a Process Network

Gross information production T*(S) Gross information consumption TH(S)
(@) =2 Al 2,7) TS, 7) =Y Az, 7)
ieS icS
eV 7eV

Net information production Tret(S) T " (S, Z') — T (S, Z') Tl (S, 2')
Total information production TST(V) is the normalized sum of TI*(S)
across all subsystems S

Mean System Shannon Entropy H(V) is the normalized average of all subsystem
Shannon Entropies H(S)

28



@ s Network

Information

Precipitation

ek WATER RESOURCES RESEARCH,
o
Full
Article

Ecohydrologic process networks:
2. Analysis and characterization

‘ ARF F I O W R es u I tS Benjamin L. Ruddell' and Praveen Kumar'
Green = wet Tmp S Comear § B Received 11 July 2008; revised 25 November 2008; accepted 19 [
N . ==y
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0.08 5= 3Synoptic, mean of all ¢ ABL mean of all ¢ Turbulent, meanof al : £ =
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%) ; ! S 100 E
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Information Production Related to
Phenology and Productivity
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Entropy [month'l]
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Net Information Flow Spectra
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Global Local

Local Range

LocC a_I vs. G I O b al Cl asses Classification ~ Classification
Scheme Scheme
. : AN
Local scheme computes entropies with respect
only to variation within each monthly period.
In global scheme, entropies can be much lower % —
because a variable may only visit a subset of @ o 1 AN
global states during each month. % | T
Local scheme increases H for months that visit nd E s
only a few global states. 3 g E_
. (2}
Effects of the filter are lessened for months that 8 & £
visit more global states. £ - v
< —i
State y Y(®)
y=4
A 4

y=3

y=2

n

H(Y,) =->_p(y)-log p(y)

yeY;




Gross Primary Production [ umel CO2 m-2 s-1 ]

Relationship of the Physical

Bounds of Variability (BOV) to

8
g
o &
. .. o :
Shannon Entropy is Positive
GPFP vs Time, 2003, Bondville FLUXNET Eddy-Covariance Site, Cormn-Soybean Ecosystem
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Mean System Shannon Entropy H"J

Mean System
Shannon Entropy

In Summer (Jul),

e Larger BOV

e Larger Shannon
Entropy/ uncertainty

* More productivity

* More information

All data presented is 30-min
L4 eddy-covariance
measurements from
FLUXNET sites (Baldocchi
2001, Reichstein et al. 2005)



For all systems and system states studied,
System-Average Information Production is a
function of System-Average Shannon Entropy

Each point on this
plot represents a

0.12

single system state’s

average process
network properties
(1 month = state)

0.1

il
%

TSTm ws Hm All Periods and Time Lags

TST" =a(r)-(Hf b=233

In Summer (Jul),
e Larger BOV

e Larger Shannon
Entropy/ uncertainty

* More information

2 .l IPH Similarity Pattern: ! « More productivity

é For all Seasons, Timescales, and Jul a = 0.065, 1hr
g Observed FLUXNET sites, a

g “U8r simple power law relates

£ Shannon Entropy to a = 0.090, 18hr
= Information Production

E 004t o

ﬁ on the system < System average Shannon
w Average. Jan i Entropy does not exceed

: roughly 0.75 because of
: the moderate Shannon

Steady State :

Systems have : Entropy of small-scale

H™ = 0 and do , H™ Envelope subsystems; see MEH.
| |

not produce any 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

information. Mean Systern Shannon Entropy H 7 36




0.08

Within a given system state, | A
a second scale-free MEH ’ g
similarity pattern holds

have higher
Shannon Entropies and export net information to
Faster/Smaller-Scale subsystems (e.g. synoptic).
Faster / Smaller-Scale subsystems have
moderate Shannon Entropies and are net
consumers of information; these subsystems are
those exhibiting Type-Il self organizing logical
relationships. (e.g. turbulent)
Intermediate-Scale subsystems that loosely
couple the large and small scales are . .
informationally neutral and have low H. (e.9. ABL) ;. |++ +— — __ I

ur

Scale is relative; “small” means the system varies
at the time and space scale at which the system R[S (a7 A
IS modeled or observed, in this case 30 minute ’ '
dynamics of FLUXNET data.




Observation: Variability =
Controls Organization in
Open Dissipative Systems

« System-averaged behavior: Total System Transport
TST(V) of information is related to the mean
Entropy of the system H(V) by a power law where
a~0.058, b~2.33, using global classes.

T

* H is the control parameter and TST is the order
parameter; all ecohydrological systems respond to
variability in the same way. Variability itself relative
to BOV is a universal organizing principle for
dynamical system state definition and transition!
[Kumar 2007, Kleidon 2007].

0025 ¢

» Range of variability is relative to local climate; 002 |
ecosystems adapt to the local variability regime as
defined in the first order by ©,, P, and y, .

TSTIV)

0ms

oot b

« With local classes, T"®(S)<0, H(X)<0.7 for variables
with local-scale feedback. High-entropy variables
have T{(S)>0, H(X)>0.7 are associated with larger A .
temporal scales and forcing variables. | e

0003 ¢




If time... Practice the lagged
logistic map example using
PNET 1.0
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