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Challenges for Observing and Modeling Complex 
Earth Systems: Feedback, Nonlinearity, and Scale 

The reductionist approach, which reduces a system 
to isolated cause-effect pairs, struggles with complex 
systems because of: 
 
• Feedback: cause & effect lose meaning when 

processes becomes circular or self-organizing.  
 
• Thresholds separate qualitatively different system 

states. Example: Plant Stomata close when soil 
moisture is < 20%. Nonlinearity is dominant at 
subdaily timescales [Baldocchi, 2001a]. 

 
• Scale: One scale cannot be isolated; all interact. 
 
• Variability: system structure is dynamic (changing 

in time), and can be controlled by the variability of 
the system itself. Example: fish populations in Illinois 
River crash when new dams reduce flow variability 
[Koel and Sparks, 2002]. 

 
• Observation: It is difficult to observe all physical 

components of the system at all relevant scales. 
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Conceptualize the Complex System as a Process Network of 
Couplings between Observable and/or Modeled Subsystems 

A Process Network is a network of feedback 
loops and the associated timescales that 
depicts the magnitude and direction of flow of 
information between the different subsystems. 
(and/or flow of matter, energy, etc.)  
 

Ecohydrological systems conceptualized as a 
hierarchy of self-organizing subsystems 
characterized by feedback couplings at 
multiple scales [Kumar, 2007]. 
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Q: What is Information? 
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Q: What is Information? 
A: Information is the 

Answer to a Question 
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Q: What is Information? 
A: Information is the 

Answer to a Question 

Q: What is our Question? 
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Q: What is Information? 
A: Information is the 

Answer to a Question 
Q: What is the right Question for 

dynamical systems study? 
A: “What will be the Future 

State of Timeseries 
Variable Y(t)?” 
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Shannon Entropy: The fundamental 
measure of uncertainty and information 

p(y) is the prior probability that discrete 
variable Y takes state y. 
 

H(Yt), the Shannon Entropy, measures the 
size of the question of state; this is also the 
amount of information we gain when we 
learn the answer to the question. 
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How to Measure Information Flow? 
Transfer Entropy! 

• To measure directional information flow 
and assess timescales of flow, we need an 
asymmetric measure of information flow 
 

• Thomas Schreiber [2000] introduces 
Transfer Entropy T, conditioning 
information shared by Xt and Yt on Yt’s 
history 
 
 
 

• T measures additional information 
contributed by Xt across at time lag τ. 
Entropy reduced = information produced. 
 

• By computing T across many time lags, we 
can assess the time scale of directional 
coupling from Xt to Yt 
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Establish Statistical Significance of 
Information Flow between Xt and Yt 

• How do we decide whether T is large 
enough to represent a significant flow of 
information? 

• Compare measured T against Ts, which 
is the information flow using a time-
shuffled Xt and Yt “bootstrapping”. 

• When T > Ts, a significant information 
flow exists; Xt contributes significantly to 
our ability to answer questions about 
future states of Yt. 

• Robustness of results additionally 
ensured by quality control including 
testing on coupled Logistic maps, and 
with various N, m, and binning schemes. 
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Is strong I due to feedback 
synchronization or forcing? 
When two variables share a lot of 

information at a given time scale, WHY? 
 
1.Type-III (Forcing-Dominated): T > I, so 

information flow dominates shared 
information.  

2.Type-II (Feedback-Dominated): T < I, 
shared information dominates 
information flow 

3.Type-I (Synchronization-Dominated): 
significant I, but not T. No flow. 

 
Eight canonical coupling types are 

formed from pairs of these couplings. 
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Build a Process Network using Tz 
Procedure: 
• Compute T between all pairs of 

variables at multiple time lags 
• Assess statistical signficiance of each 

information flow coupling 
• Compute Tz  
• Identify Characteristic Time Lag 
• Construct Process Network 
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ATz(i,j) , 'x' means Type-I coupling, bold means Type-II coupling, otherwise Type-III coupling
R g Θ a VPD Θ s P θ γ H γ LE GER NEE GEP C F

R g 0.10 x x x 1.25 x 0.74 0.53 x 0.73 0.63 x
Θ a x x x x 1.16 x 1.27 2.06 x 3.38 2.76 x
VPD x x x x 1.33 x 1.40 0.76 x 1.56 1.33 x
Θ s x x x x 0.90 x 1.54 2.17 x 2.93 2.46 x
P 1.44 x x x 0.15 0.93 2.30 2.77 x 2.53 1.89 x
θ x x x x 1.06 x 1.27 2.42 x 2.13 x x
γ H 0.62 x x x 2.41 x 0.09 1.16 x 0.92 0.94 x
γ LE 0.43 x x x 1.93 x 0.89 0.15 x 0.90 0.84 x
GER x x x x 1.35 x 1.25 1.87 x 1.98 1.70 x
NEE 0.48 x x x 1.83 x 0.82 0.92 x 0.14 0.22 x
GEP 0.42 x x x 1.48 x 0.96 0.88 x 0.22 0.13 x
C F x x x x 0.55 x 1.75 2.16 x 2.21 2.36 x
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Testing with Coupled 
Logistic Chaotic Time-Series 

• Construct two synthetic time-series 
with time-lag relationships 

– Coupled Autoregressive Noise 
– Coupled Logistic Maps 
– lagAB = 1, lagBA = 7 
– r=3.99 [Logistic Map chaotic range] 

 
• Characteristic Lag τ is the first 

significant local peak to occur in a 
spectrum (circled in green). It is 
desirable to reduce dimensionality of 
the problem by picking just one τ. 
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• Plot peak-lag T vs. #Bins, #Data used. 
Too few bins or data causes negative 
bias in T. Too many bins does the same. 
 

• For the coupled logistic map, 10-20 bins, 
200+ samples are adequate to provide a 
fully mature estimate of T. 
 

• For the γLE and NEE coupling, 500+ data 
and 3-35 bins achieve a qualitatively 
accurate estimate, but one which is not 
fully mature. We lack sufficient data and 
must make a compromise. 
 
 
 
 

Estimation Issues: How Many Bins and Data? 
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Periodic Noise Sensitivity (P1) 
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Proving T 
(I)  Toy Data 

• Construct two toy datasets with 
directional time-lag relationships 

– Coupled Autoregressive Noise (AR) 
– Coupled Logistic Maps 
– lagAB = 1, lagBA = 7 
– r=3.99 [Logistic Map chaotic range] 
– C=0.5 [moderate coupling] 

 
• AR has a positive linear correlation 

at specified lags, but Logistic Map 
has no linear relationship at all 
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Proving T 
(II)  Add Periodics to Toy Data 
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•Using environmental timeseries 
data, all signals are dominated by 
periodics (diurnal, synoptic, 
seasonal oscillations) which are 
noise for our purposes. 
 

•Add sine-wave periodic “noise” to 
our toy signals to test the methods 
 

•Normalize sine wave and toy 
signals to mean 0 and Standard 
Deviation 1 then add them together 
in proportion to a Signal-to-Noise 
ratio (SNR) 
 

•Plots to right have SNR=1 

* For 10000 data, using 11 discrete equal-interval states 



Proving T 
(III) Inter-Scalar Relationships 
• Use T to resolve asymmetric 

information flow between scales 
 

• Test using reformulated Coupled 
Logistic Map, where values in Y 
are mapped based on the mean of 
the previous r number of timesteps 
in X (X is transformed using a 
moving average of length r) 
 

• Plotting T against the source (X) 
and sink (Y) process scale, this 
method identifies a peak process 
scale of the coupling from X to Y at 
(rX=6,rY=1) 
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• Compared with correlations, etc., Information Flow resolves 
nonlinear and discrete relationships. 

• Metrics are based on probability theory, so the results are directly 
related to predictability and uncertainty. 

• T is asymmetric and conditioned on auto-information so it can 
distinguish one-way relationships from two-way relationships; in 
other words it can distinguish two-way feedback-based 
synchronization of two subsystems from one-way forcing of one 
subsystem by the other. 

• By distinguishing synchronization from forcing relationships and 
identifying the time and space scales of these couplings, it is 
possible to logically delineate a hierarchy of physical/functional 
subsystems that share the same types couplings with the system. 

• Information is conserved on the Process Network; this enables the 
calculation of system-average properties and the sensitivity of the 
system as a whole to changes in specific subsystems. 
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What makes these statistics different? 
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Example Experimental 
Framework 

Natural Laboratory / Observatory Concept: an 
uncontrolled experiment consisting of many passive 
observation and data collection in the natural world. 
 
FLUXNET Network: a global flux tower network 
collecting meteorological, hydrological, and 
environmental data, including carbon, water, and 
energy fluxes on the land surface [Baldocchi, 2001b]. 
 
Timeseries Dataset*: several timeseries variables 
representing the most important ecohydrological 
processes are collected at eight North American 
FLUXNET sites, at a 30-minute averaging resolution, 
for the years 1998-2006. The Level-4 (L4) gap filled, 
quality controlled product is the best available product 
[Reichstein et al., 2005] 
 
*Data is preprocessed into a periodic anomaly, to 
emphasize change and filter out periodic cycles at 
scales greater than the subdaily (>24 hours). 
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By focusing on perturbations rather than 
the scalar magnitude of timeseries data, we 
can examine at the coupling and feedback 
that is embedded within the solar radiation 
cycle, rather than the cycle itself. 
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• SWC, Resp, Tsoil, Tair, 
VPD show strong self-I 
results and slow decay 
with strong self-I to and 
past 24 hours… a 
synoptic-scale signature 
 

• Precip, Cloud, and H 
show very weak I results, 
with little I past 6 hours… 
and no diurnal cycle 
 

• Rg, LE, NEE show strong 
diurnal cycle signatures, 
decaying by 6 hours but 
echoing at 12 and 24 
hours. Interestingly, H 
does not do this. 



<30 min bidirectional feedback 
 
Timescale corresponds to that 
known to control variance in 
turbulent canopy processes 
[Baldocchi et al. 2001]. 
 
γLE and NEE control each other, 
achieving a self-organized 
dynamic equilibrium via 
feedback at turbulent timescales 

Coupling between Latent Heat Flux 
and Net Ecosystem Exchange 
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Coupling between Latent Heat Flux 
and Precipitation 

2 to 16 hour feedback 
 
mechanism of moisture 
recycling in the ABL 
 
NEE coupled to LE, so NEE 
indirectly controls ABL moisture 
recycling process 
 
Individual plants’ photosynthetic 
processes combine to control ABL 
on a regional scale 
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Example: Characterizing 
drought as a change in 
observed information 
feedback (in Illinois) 

Standardized Precipitation Index 
http://www.drought.unl.edu/ 

Using the Bondville FLUXNET site; 
a corn-soybean ecosystem 
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Moisture-Based 
Regional Feedback 
Coupling Breaks Down 
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Computing Information Production and 
Shannon Entropy of a Process Network 

Gross information production T[+](S) 

∑
∈
∈

+ =

Vz
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S ziT ),,()(][ ττ A

S S
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izST ),,(),(][ ττ A

),(),(),( ][][ τττ STSTST net −+ −=Net information production Tnet(S) 

Gross information consumption T[-](S) 

Total information production TST(V) is the normalized sum of T[+](S) 
    across all subsystems S 

Mean System Shannon Entropy H(V) is the normalized average of all subsystem 
    Shannon Entropies H(S) 
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Network 
Information 
Flow Results 
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2001, Reichstein et al. 2005) 
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Local vs. Global Classes 
• Local scheme computes entropies with respect 

only to variation within each monthly period. 
• In global scheme, entropies can be much lower 

because a variable may only visit a subset of 
global states during each month. 

• Local scheme increases H for months that visit 
only a few global states. 

• Effects of the filter are lessened for months that 
visit more global states. 
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Relationship of the Physical 
Bounds of Variability (BOV) to 
Shannon Entropy is Positive 

In Summer (Jul), 
• Larger BOV 
• Larger Shannon 
Entropy/ uncertainty 

• More productivity 
• More information 

All data presented is 30-min 
L4 eddy-covariance 
measurements from 
FLUXNET sites (Baldocchi 
2001, Reichstein et al. 2005) 
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For all systems and system states studied, 
System-Average Information Production is a 
function of System-Average Shannon Entropy 
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b ≈ 2.33 ( )bm
V

m
V HaTST ⋅= )(τ

In Summer (Jul), 
• Larger BOV 
• Larger Shannon 
Entropy/ uncertainty 

• More information 
• More productivity 
 

Jan 

Jul a = 0.065, 1hr 

a = 0.090, 18hr 

Hm Envelope 

IPH Similarity Pattern:  
 
For all Seasons, Timescales, and 
Observed FLUXNET sites, a 
simple power law relates  
Shannon Entropy to  
Information Production 
on the system 
Average. 

System average Shannon 
Entropy does not exceed 
roughly 0.75 because of 
the moderate Shannon 
Entropy of small-scale 
subsystems; see MEH. 

Steady State 
Systems have 
Hm = 0 and do 
not produce any 
information. 

Each point on this 
plot represents a 
single system state’s 
average process 
network properties 
(1 month = state) 



Within a given system state, 
a second scale-free MEH 
similarity pattern holds 

37 

• Slower / Larger-Scale subsystems have higher 
Shannon Entropies and export net information to 
Faster/Smaller-Scale subsystems (e.g. synoptic). 

• Faster / Smaller-Scale subsystems have 
moderate Shannon Entropies and are net 
consumers of information; these subsystems are 
those exhibiting Type-II self organizing logical 
relationships. (e.g. turbulent) 

• Intermediate-Scale subsystems that loosely 
couple the large and small scales are 
informationally neutral and have low H. (e.g. ABL) 

• Scale is relative; “small” means the system varies 
at the time and space scale at which the system 
is modeled or observed, in this case 30 minute 
dynamics of FLUXNET data. 
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Observation: Variability 
Controls Organization in 
Open Dissipative Systems 
• System-averaged behavior: Total System Transport 

TST(V) of information is related to the  mean 
Entropy of the system H(V) by a power law where 
a~0.058, b~2.33, using global classes. 
 

• H is the control parameter and TST is the order 
parameter; all ecohydrological systems respond to 
variability in the same way. Variability itself relative 
to BOV is a universal organizing principle for 
dynamical system state definition and transition! 
[Kumar 2007, Kleidon 2007].  
 

• Range of variability is relative to local climate; 
ecosystems adapt to the local variability regime as 
defined in the first order by Θa, P, and γLE. 
 

• With local classes, Tnet(S)<0, H(X)<0.7 for variables 
with local-scale feedback. High-entropy variables 
have Tnet(S)>0, H(X)>0.7 are associated with larger 
temporal scales and forcing variables.  

min 
H(V) 

max 
H(V) 



If time… Practice the lagged 
logistic map example using 

PNET 1.0 
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