Information in Models and Data

Grey Nearing

National Center for Atmospheric Research NASA Goddard Space Flight Center University of Maryland Baltimore County

Grey Nearing - 26/04/2016 Schneefernerhaus

What is a Model?

"The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges." - Van Quine (1951)

Ontology & Epistemology in Geophysical Models

The Description of an Experiment

Before running the experiment: $p(D_1 \land D_2) = p(D_2 | D_1) \times p(D_1)$ After running the experiment: $d(D_1 \land D_2) = d(D_2) + d(D_1) - d(D_1 \lor D_2)$

The Open Problem

The Demarcation Problem: Science is either well-defined and impractical or un-defined and practical.

- Hume: Induction cannot be rigorously supported.
- **Popper:** Therefore, science must be deductive.
- Salmon: Falsification is not practical because few (all) models are falsified.
- Jaynes: Bayesianism is at least consistent with the axioms of deductive logic, however fundamentally inductive.

To reconcile the falsification criteria with Bayesian model evaluation: Does the model contain as much information as the observations?

How well are we doing right now?

Our best physically-based surface hydrology models cannot beat linear regressions that have <u>no state memory</u>, and which are <u>trained out-of-sample</u> and <u>extrapolated globally</u>.

M. Best et al. (2015) "The Plumbing of Land Surface Models" Journal of Hydrometeorology

Information Theory – Basic Principles

Consequence 2: Bounded under transformations.

$$I(D; U) \geq I(D; M(U))$$

Measuring Information

$$U \rightarrow \mathcal{M} \rightarrow Y$$

 $\stackrel{Premise: No system is isolated. A scientist perturbs a system and measures it's response$

Definition: The information content of data is defined by our ability to derive asymptotic relationships between measured perturbations and responses.

$$D = \mathcal{R}_e(U)$$

Example 1: Uncertainty Segregation

Definition: The information content of data is defined by our ability to derive asymptotic relationships between measured perturbations and responses.

$$D = \mathcal{R}_e(U)$$

I(D; M) = H(D) - H(D|M)

Example 1: Uncertainty Segregation

Definition: The information content of data is defined by our ability to derive asymptotic relationships between measured perturbations and responses.

$$D = \mathcal{R}_e(U)$$

G. Nearing et al. (2016) "Benchmarking NLDAS-2 to Separate Uncertainty Contributions" JHM

Model: $d\mathbf{x} = \mu(\mathbf{x}, \mathbf{u})dt + \sigma(\mathbf{x}, \mathbf{u})dB_t$ Data Assimilation: $p(\mathbf{x}_t | \mathbf{y}_t) \propto h(\mathbf{y}_t | \mathbf{x}_t)m(\mathbf{x}_t | \mathbf{u}_{1:t})$

Model: $d\mathbf{x} = \mu(\mathbf{x}, \mathbf{u})dt + \sigma(\mathbf{x}, \mathbf{u})dB_t$ Data Assimilation: $p(\mathbf{x}_t | \mathbf{y}_t) \propto h(\mathbf{y}_t | \mathbf{x}_t)m(\mathbf{x}_t | \mathbf{u}_{1:t})$

- AMSR-E Soil Moisture Retrievals
- NOAH-MP Model
- Ensemble Kalman Filter

The Ensemble Kalman Filter is only about 30% efficient in this experiment.

Measurement	Interpretation	Value [nats/nats]
Information in Noah simulations	Model H(a) Evaluation Data H(a)	0.17
Information in LPRM (AMSR-E) retrievals	Nodel H(a) Retrievals H(y)	0.24
Total information in Noah and LPRM (AMSR-E) together	Model H(a) R(z) Retrievals H(y)	0.61
Information from Data Assimilation	Availables H(p)	0.18
EnKF Efficiency	Model H(A) Retrievals H(y)	0.29

Measuring Information

General Definition	$I(D; M) = E\left[f\left(\frac{p_{D M}}{p_D}\right)\right]$
Specific Definition:	$f(\xi) = -\ln(\xi)$ $I(D; M) = E\left[\ln(p_{D M})\right] - E\left[\ln(p_D)\right]$
Linearity Property:	I(D; M) = H(D) - H(D M)

Information *quality* is related to whether the probabilities move in the right direction.

Example 3: Information from Hypotheses

"it must be demonstrated that the model physics actually adds information to the prediction system." - van den Hurk et al. (2011; BAMS)

Example 3: Information from Hypotheses

"it must be demonstrated that the model physics actually adds information to the prediction system." - van den Hurk et al. (2011; BAMS)

Summary

The ontological model cannot be separated from the epistemological model.

Models translate information.

The model of an experiment is a logarithm.

This model of an experiment yields a deductive science.

Information is easier to work with than probabilities.

