Information in Models and Data
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What is a Model?

“The totality of our so-called knowledge or beliefs, from the most casual matters of geography and
history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made
fabric which impinges on experience only along the edges.” - Van Quine (1951)
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Ontology & Epistemology in Geophysical Models
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“the belief system of any rational
agent must obey the standard

axioms of probability”
— Richard Cox (1946)
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Symmetry

“In so far as a scientific statement speaks about

‘ Plant Demography ]

l Propositional Calculus ‘

reality, it must be falsifiable: and in so far as it is

not falsifiable, it does not speak about reality.”
- Karl Popper (1959)
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“With enough data — and often only

a fairly moderate amount — any
analyst could reject any model”
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The Description of an Experiment

Before running the experiment:  p(D{AD;) = p(D,|D4) X p(D4)

After running the experiment: d(D,AD,) =d(D,) +d(D,) —d(D,VD,)
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The Open Problem

The Demarcation Problem: Science is either well-defined and impractical or
un-defined and practical.

* Hume: Induction cannot be rigorously supported.
* Popper: Therefore, science must be deductive.
* Salmon: Falsification is not practical because few (all) models are falsified.

 Jaynes: Bayesianism is at least consistent with the axioms of deductive
logic, however fundamentally inductive.

To reconcile the falsification criteria with Bayesian model evaluation:
Does the model contain as much information as the observations?
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How well are we doing right now?

Our best physically-based surface hydrology models cannot
beat linear regressions that have no state memory, and
which are trained out-of-sample and extrapolated globally.
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FIG. 4. Ranking of benchmarks and each model for the standard statistics (MBE, NME, SD, r) across all 20 sites. A ranking of 1 corresponds to the best performance. The dotted lines are

a visual guide and have no scientific relevance.
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Information Theory — Basic Principles
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Information is the
ability of signal to effect
a changeina
probability distribution.

General Definition

Specific Definition:

Linearity Property:
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f(§) = —In(S)
I(D; M) = E[ln(pD|M)] — E[In(pp)]

I(D; M) = H(D) — H(D|M)

Consequence 1: Linearity

Consequence 2: Bounded under
transformations.

I(D;U) = 1(D; M(U))




Measuring Information
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U | Model Inputs
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Information is the
ability of signal to effect
a changeina
probability distribution.

p
General Definition [(D;M) = E [f( ;LM)]

. o f(6) = —1n(§)
Specific Definition: 1(D: M) = E[ln(pD|M)] — E[In(pp)]

Linearity Property: [(D; M) = H(D) — H(D|M)

Premise: No system is
isolated. A scientist

U— M perturbs a system and

measures it’s response

Definition: The information content of data is defined

by our ability to derive asymptotic relationships
between measured perturbations and responses.

D =R.(U)




Example 1: Uncertainty Segregation

p(e) = f f f M (Uo.t, 0) om0
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I(D; M) = H(D) — H(D|M)
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Definition: The information content of data is defined
by our ability to derive asymptotic relationships
between measured perturbations and responses.

D=R.(U)
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Example 1: Uncertainty Segregation

I(D; M) = H(D) — H(D|M)

p(e) = f f f M (Uo.t, 0) om0
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Definition: The information content of data is defined Soil Moisture Evapotranspiration
by our ability to derive asymptotic relationships
between measured perturbations and responses.

D=R.,(U) B Forone

I Parameters

G. Nearing et al. (2016) “Benchmarking NLDAS-2 to Separate Uncertainty Contributions” JHM
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Example 2: Data Assimilation

Model:

Data Assimilation:

dx = u(x,u)dt + o(x, u)dB;
p(x|ye) < h(y lx )m(xe|uy..)
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Example 2: Data Assimilation

Model:  dx = u(x,u)dt + o(x,u)dB;

Data Assimilation: p(xtlyt) X h(ytlxt)m(xtlul:t)

Sample of
Model States . ,
o e ;
= ! : :
w ; : :
el I 1 T
o : f |
w1 ! i I
L= : : : ,
2 | ' ; Total Available
b i " I .
: ! Information
{'{ Observation !
. Error Wariance :
| C Time > .
tes teo et t, Assim. Obs
H(0)




Example 2: Data Assimilation

Total information
extracted by DA.

Data
H(D)
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Information
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Example 2: Data Assimilation

e NOAH-MP Model
e Ensemble Kalman Filterm

e AMSR-E Soil Moisture Retrievals

The Ensemble Kalman
Filter is only about 30%
efficient in this
experiment.
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Value
Measurement Interpretation [nats/nats]

Information in Noah simulations 0.17

Information in LPRM (AMSR-E) oy
retrievals ’

Total information in Noah and LPRM 0.61
(AMSR-E) together |

Information from Data Assimilation 0.18

EnKF Efficiency
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Measuring Information

D | Evaluation Data
= Prior U
— « Posterior
/;;; Divergence Area (Mutual Information)

Model Inputs

M| Model

Information is the

ability of signal to effect
a changeina

probability distribution.

7
70000
Z ///4/2{/;74}

N\
N
N

\

. Pp|m
General Definition I(D;M) =E|f(——

Pp
- o f(6) = —1n(§)
Specific Definition: 1(D; M) = E[ln(pD|M)] — E[In(pp)]

H(D) — H(D|M)

Linearity Property: |(D; M)

= Prior Distribution

wseeeee Evaluation Distribution g
= = Modeled Distribution

72

NN
M
NNNNNNN

Good Information

Bad Information

/,
/)

’
74

g/
W

/

7
7
7

0

S

LSS

D7
0,
77

/S
&

%

LSS
700057

27

ARRRNY
AN

NN /
AN /
N
RS

/,

AN
N
NN

NANY ///
— N\
% NN
AN %

Information guality is related to whether the
probabilities move in the right direction.



Example 3: Information from Hypotheses
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“it must be demonstrated that the model physics
actually adds information to the prediction system.”
- van den Hurk et al. (2011; BAMS)
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G. Nearing & H. Gupta (2015) “The quantity and quality of information in models” WRR




Example 3: Information from Hypotheses

SGPR Prior
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“it must be demonstrated that the model physics
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Summary

The ontological model cannot be separated from the epistemological model.

Ul M > v Models translate information.

The model of an experiment is a logarithm.

This model of an experiment yields a deductive science.

Information is easier to work with than probabilities.
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